{"title":"Integrated Serum Pharmacochemistry, Network Pharmacology, and Molecular Docking to Study the Mechanism of Rhubarb against Atherosclerosis.","authors":"Zhi-Yan Cai, Shu-Jiao Li, Yu-Qing Wang","doi":"10.2174/0113892010296117240531071301","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipids, the formation of lesion plaques, and the narrowing of arterial lumens. Rhubarb has significant effects against AS, but there is a lack of analysis and exploration of the mechanism of action of the transitional components in serum containing rhubarb.</p><p><strong>Objective: </strong>This work aims to combine serum pharmacochemistry, network pharmacology, and molecular docking to explore active ingredients and mechanism of rhubarb against AS.</p><p><strong>Method: </strong>Firstly, the components of rhubarb in blood samples were identified using HPLC-QTOF/MS. The ingredients-targets-disease interaction network of rhubarb was constructed through network pharmacology. Then, molecular docking between the ingredients and the core targets was carried out using the Autodock Vina software.</p><p><strong>Results: </strong>Eleven active ingredients and five metabolites were preliminarily identified. The network pharmacology results showed that chrysophanol, resveratrol, and emodin might have potential pharmacological effects on AS. The PPI network showed that the key proteins were PTGS2, ESR1, PTGS1, and ELANE. GO analysis revealed that genes were mainly enriched in the inflammatory response and response to exogenous stimuli. Moreover, these genes were related to IL-17 signaling pathways, lipid and atherosclerosis, and other pathways. Molecular docking analyses showed that chrysophanol and emodin have strong binding affinities with the target proteins PTGS2 and PTGS1.</p><p><strong>Conclusion: </strong>A comprehensive strategy combining serum pharmacochemistry with network pharmacology and molecular docking was employed to investigate the active ingredients and the mechanism of rhubarb in treating AS, which provided a basis for studying the pharmacological effects and action mechanisms of rhubarb.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010296117240531071301","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipids, the formation of lesion plaques, and the narrowing of arterial lumens. Rhubarb has significant effects against AS, but there is a lack of analysis and exploration of the mechanism of action of the transitional components in serum containing rhubarb.
Objective: This work aims to combine serum pharmacochemistry, network pharmacology, and molecular docking to explore active ingredients and mechanism of rhubarb against AS.
Method: Firstly, the components of rhubarb in blood samples were identified using HPLC-QTOF/MS. The ingredients-targets-disease interaction network of rhubarb was constructed through network pharmacology. Then, molecular docking between the ingredients and the core targets was carried out using the Autodock Vina software.
Results: Eleven active ingredients and five metabolites were preliminarily identified. The network pharmacology results showed that chrysophanol, resveratrol, and emodin might have potential pharmacological effects on AS. The PPI network showed that the key proteins were PTGS2, ESR1, PTGS1, and ELANE. GO analysis revealed that genes were mainly enriched in the inflammatory response and response to exogenous stimuli. Moreover, these genes were related to IL-17 signaling pathways, lipid and atherosclerosis, and other pathways. Molecular docking analyses showed that chrysophanol and emodin have strong binding affinities with the target proteins PTGS2 and PTGS1.
Conclusion: A comprehensive strategy combining serum pharmacochemistry with network pharmacology and molecular docking was employed to investigate the active ingredients and the mechanism of rhubarb in treating AS, which provided a basis for studying the pharmacological effects and action mechanisms of rhubarb.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.