Zwitterion Intercalated Manganese Dioxide Nanosheets as High-Performance Cathode Materials for Aqueous Zinc Ion Batteries

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-06-06 DOI:10.1002/smll.202402811
Aina Zhang, Xiuxiu Yin, Ismael Saadoune, Yingjin Wei, Yizhan Wang
{"title":"Zwitterion Intercalated Manganese Dioxide Nanosheets as High-Performance Cathode Materials for Aqueous Zinc Ion Batteries","authors":"Aina Zhang,&nbsp;Xiuxiu Yin,&nbsp;Ismael Saadoune,&nbsp;Yingjin Wei,&nbsp;Yizhan Wang","doi":"10.1002/smll.202402811","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO<sub>2</sub> in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO<sub>2</sub> (MnO<sub>2</sub>-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO<sub>2</sub> layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H<sup>+</sup>/Zn<sup>2+</sup> ions through their interactions, thus improving reaction kinetics. The resulting MnO<sub>2</sub>-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO<sub>2</sub>, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202402811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO2 in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO2 (MnO2-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO2 layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H+/Zn2+ ions through their interactions, thus improving reaction kinetics. The resulting MnO2-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO2, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.

Abstract Image

Abstract Image

作为水性锌离子电池高性能阴极材料的共价键合二氧化锰纳米片。
本研究采用了一种新方法来解决锌离子水电池中 δ-MnO2 结构不稳定和反应动力学迟缓所带来的挑战。与传统的阳离子插层方法不同,该研究利用齐聚物甜菜碱(Bet)进行插层,合成了 Bet 插层 MnO2(MnO2-Bet)。Bet 中带正电荷的季铵盐基团与 δ-MnO2 层中带负电荷的氧原子形成强烈的静电相互作用,增强了结构的稳定性,防止了层的坍塌。同时,Bet 中带负电荷的羧酸基团通过相互作用促进了 H+/Zn2+ 离子的快速扩散,从而改善了反应动力学。由此产生的 MnO2-Bet 阴极具有高比容量、卓越的速率能力、快速的反应动力学以及更长的循环寿命。这种双重功能的插层策略大大优化了 δ-MnO2 的电化学性能,使其成为一种很有前途的先进水性锌离子电池阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信