Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jonathan M. Larson , Andrew Dopilka , Robert Kostecki
{"title":"Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces","authors":"Jonathan M. Larson ,&nbsp;Andrew Dopilka ,&nbsp;Robert Kostecki","doi":"10.1016/j.coelec.2024.101548","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical interfaces are central to the function and performance of energy storage devices. Thus, the development of new methods to characterize these interfaces, in conjunction with electrochemical performance, is essential for bridging the existing knowledge gaps and accelerating the development of energy storage technologies. Of particular need is the ability to characterize surfaces or interfaces in a non-destructive way with adequate resolution to discern individual structural and chemical building blocks. To this end, sub-diffraction-limit low-energy infrared optical probes that exploit near-field interactions within atomic force microscopy platforms, such as pseudoheterodyne nanoimaging, photothermal nanoimaging and nanospectroscopy, and nanoscale Fourier transform infrared spectroscopy, are all powerful emerging techniques. These are capable of non-destructive surface probing and imaging at nanometer resolution. This review outlines recent efforts to characterize <em>ex situ</em><em>,</em><em>in situ</em><em>,</em>and<em>operando</em> electrode materials and electrochemical interfaces in rechargeable batteries with these advanced infrared near-field probes.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101548"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001091/pdfft?md5=e5feb386d7f632adb48aa69fdf9677f0&pid=1-s2.0-S2451910324001091-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001091","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical interfaces are central to the function and performance of energy storage devices. Thus, the development of new methods to characterize these interfaces, in conjunction with electrochemical performance, is essential for bridging the existing knowledge gaps and accelerating the development of energy storage technologies. Of particular need is the ability to characterize surfaces or interfaces in a non-destructive way with adequate resolution to discern individual structural and chemical building blocks. To this end, sub-diffraction-limit low-energy infrared optical probes that exploit near-field interactions within atomic force microscopy platforms, such as pseudoheterodyne nanoimaging, photothermal nanoimaging and nanospectroscopy, and nanoscale Fourier transform infrared spectroscopy, are all powerful emerging techniques. These are capable of non-destructive surface probing and imaging at nanometer resolution. This review outlines recent efforts to characterize ex situ,in situ,andoperando electrode materials and electrochemical interfaces in rechargeable batteries with these advanced infrared near-field probes.

电化学储能材料和界面的红外纳米成像和纳米光谱学
电化学界面对储能设备的功能和性能至关重要。因此,结合电化学性能开发表征这些界面的新方法,对于弥补现有知识差距和加快储能技术的发展至关重要。特别需要的是能够以非破坏性的方式表征表面或界面,并具有足够的分辨率来辨别单个结构和化学构件。为此,在原子力显微镜平台内利用近场相互作用的亚衍射极限低能红外光学探针,如伪外差纳米成像、光热纳米成像和纳米光谱以及纳米级傅立叶变换红外光谱,都是强大的新兴技术。这些技术能够以纳米分辨率进行非破坏性的表面探测和成像。本综述概述了利用这些先进的红外近场探针对充电电池中的原位、原位和过电流电极材料及电化学界面进行表征的最新研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信