{"title":"The finite type of modules of bounded projective dimension and Serre's conditions","authors":"Michal Hrbek, Giovanna Le Gros","doi":"10.1112/blms.13099","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a commutative Noetherian ring. For a natural number <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>, we prove that the class of modules of projective dimension bounded by <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is of finite type if and only if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies Serre's condition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(S_k)$</annotation>\n </semantics></math>. In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional version of the Govorov–Lazard theorem holds if and only if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the ‘almost’ Serre condition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(C_{k+1})$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2760-2775"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a commutative Noetherian ring. For a natural number , we prove that the class of modules of projective dimension bounded by is of finite type if and only if satisfies Serre's condition . In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the -dimensional version of the Govorov–Lazard theorem holds if and only if satisfies the ‘almost’ Serre condition .