Ting Ma , Guocheng Xu , Juan Dong , Xiaopeng Gu , Qiuyue Fan
{"title":"Simulation and experiment of complex residual stress detection of metal plate based on critical refracted longitudinal wave (LCR) method","authors":"Ting Ma , Guocheng Xu , Juan Dong , Xiaopeng Gu , Qiuyue Fan","doi":"10.1016/j.ndteint.2024.103157","DOIUrl":null,"url":null,"abstract":"<div><p>This study is based on the principles of acoustoelasticity, analyzing the variation in sound wave time-of-flight(TOF) under different conditions using the critical refracted longitudinal(L<sub>CR</sub>) wave method. A simulation model was developed using the COMSOL finite element simulation software to mimic the propagation of L<sub>CR</sub> wave in a stress-free plate. The model was then subjected to uniaxial loading, and the change in wave TOF was observed by varying the angle between the stress direction and the sound wave propagation direction under constant load. The results were compared with theoretical calculations, showing a high degree of agreement, validating the accuracy of the designed model. Subsequently, during the tensile testing, the influence of different uniaxial loads and angle variations on the TOF of L<sub>CR</sub> wave was observed. Upon comparing the experiment data with theoretical calculations, a high degree of consistency in the trend of variation is observed, this demonstrates that the detection platform established in this study is feasible for the assessment of residual stresses in practice.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103157"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001221","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study is based on the principles of acoustoelasticity, analyzing the variation in sound wave time-of-flight(TOF) under different conditions using the critical refracted longitudinal(LCR) wave method. A simulation model was developed using the COMSOL finite element simulation software to mimic the propagation of LCR wave in a stress-free plate. The model was then subjected to uniaxial loading, and the change in wave TOF was observed by varying the angle between the stress direction and the sound wave propagation direction under constant load. The results were compared with theoretical calculations, showing a high degree of agreement, validating the accuracy of the designed model. Subsequently, during the tensile testing, the influence of different uniaxial loads and angle variations on the TOF of LCR wave was observed. Upon comparing the experiment data with theoretical calculations, a high degree of consistency in the trend of variation is observed, this demonstrates that the detection platform established in this study is feasible for the assessment of residual stresses in practice.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.