A simulated annealing metaheuristic approach to hybrid flow shop scheduling problem

IF 3.9 Q2 ENGINEERING, INDUSTRIAL
Mohamed Karim Hajji , Oumayma Hamlaoui , Hatem Hadda
{"title":"A simulated annealing metaheuristic approach to hybrid flow shop scheduling problem","authors":"Mohamed Karim Hajji ,&nbsp;Oumayma Hamlaoui ,&nbsp;Hatem Hadda","doi":"10.1016/j.aime.2024.100144","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates a complex hybrid flow shop scheduling problem prevalent in the industrial sector, characterized by dedicated machines, availability dates, and delivery times. The primary objective is to minimize the total completion time (makespan) in a two-stage workshop setting. We conducted a comprehensive literature review, revealing a scarcity of research on this specific configuration, and employed the Simulated Annealing metaheuristic as our main resolution method. Special emphasis was placed on the meticulous parameterization and configuration of this metaheuristic, crucial for navigating the complexity of the problem.</p><p>Our findings demonstrate the remarkable effectiveness of the Simulated Annealing method, particularly in achieving low deviation from the lower bound in larger problem sizes and specific instance classes. This consistency highlights the method’s robustness and suitability for complex scheduling scenarios. The study also reveals varying degrees of problem solvability across different instance classes, with computation times generally reasonable except in more challenging scenarios.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000096/pdfft?md5=568d8b28e0aa6aad12d2b5e6b96f31cc&pid=1-s2.0-S2666912924000096-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912924000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a complex hybrid flow shop scheduling problem prevalent in the industrial sector, characterized by dedicated machines, availability dates, and delivery times. The primary objective is to minimize the total completion time (makespan) in a two-stage workshop setting. We conducted a comprehensive literature review, revealing a scarcity of research on this specific configuration, and employed the Simulated Annealing metaheuristic as our main resolution method. Special emphasis was placed on the meticulous parameterization and configuration of this metaheuristic, crucial for navigating the complexity of the problem.

Our findings demonstrate the remarkable effectiveness of the Simulated Annealing method, particularly in achieving low deviation from the lower bound in larger problem sizes and specific instance classes. This consistency highlights the method’s robustness and suitability for complex scheduling scenarios. The study also reveals varying degrees of problem solvability across different instance classes, with computation times generally reasonable except in more challenging scenarios.

混合流水车间调度问题的模拟退火元智方法
本研究探讨的是工业领域普遍存在的复杂混合流程车间调度问题,其特点是专用机器、可用日期和交货时间。主要目标是在两阶段车间环境中最大限度地减少总完成时间(makespan)。我们进行了全面的文献综述,发现对这一特定配置的研究很少,因此我们采用了模拟退火元启发式作为主要的解决方法。我们的研究结果表明,模拟退火法效果显著,特别是在问题规模较大和特定实例类别中,偏离下限的程度较低。这种一致性凸显了该方法的稳健性和对复杂调度场景的适用性。这项研究还揭示了不同实例类别中问题的不同程度的可解决性,除更具挑战性的情况外,计算时间一般都比较合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信