Serge Sonfack Sounchio, Laurent Geneste, Bernard Kamsu Foguem
{"title":"A hypotheses-driven framework for human–machine expertise process","authors":"Serge Sonfack Sounchio, Laurent Geneste, Bernard Kamsu Foguem","doi":"10.1016/j.cogsys.2024.101255","DOIUrl":null,"url":null,"abstract":"<div><p>The hypothesis-driven methodology is a cognitive activity used in expertise processes to solve problems with limited knowledge and understanding. Although some organizations have standardized this approach to guide humans in carrying out expertise in enterprises, it lacks appropriate tools to assist experts in carrying out this cognitive activity, tracking understanding, or capturing the reasoning steps and the knowledge produced during the process.</p><p>To acquire, share and reuse experts’ knowledge applied during expertise processes while assisting humans in bringing understanding to complex problems, this study introduces a human–machine collaborative framework that formalizes experts’ knowledge from the hypothesis-driven methodology described in the France standard NF X50-110 of “Quality of expertise activity”. This framework utilizes Hypothesis Theory extended with qualitative doubt and a systematic reasoning process to generate a hypothesis exploratory graph (HEG).</p><p>The proposed approach makes it easier to carry out expertise processes through a human–machine collaboration, offers a means to share and reuse knowledge from expertise, and provides expertise processes evaluation mechanisms. Furthermore, an experiment conducted on a use-case of expertise process verifies the feasibility and effectiveness of the approach.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"87 ","pages":"Article 101255"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000494/pdfft?md5=9c52e6fa4afbcba466c874d4febe947f&pid=1-s2.0-S1389041724000494-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000494","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The hypothesis-driven methodology is a cognitive activity used in expertise processes to solve problems with limited knowledge and understanding. Although some organizations have standardized this approach to guide humans in carrying out expertise in enterprises, it lacks appropriate tools to assist experts in carrying out this cognitive activity, tracking understanding, or capturing the reasoning steps and the knowledge produced during the process.
To acquire, share and reuse experts’ knowledge applied during expertise processes while assisting humans in bringing understanding to complex problems, this study introduces a human–machine collaborative framework that formalizes experts’ knowledge from the hypothesis-driven methodology described in the France standard NF X50-110 of “Quality of expertise activity”. This framework utilizes Hypothesis Theory extended with qualitative doubt and a systematic reasoning process to generate a hypothesis exploratory graph (HEG).
The proposed approach makes it easier to carry out expertise processes through a human–machine collaboration, offers a means to share and reuse knowledge from expertise, and provides expertise processes evaluation mechanisms. Furthermore, an experiment conducted on a use-case of expertise process verifies the feasibility and effectiveness of the approach.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.