Convergence estimates for some composition operators

IF 1.1 Q1 MATHEMATICS
Vijay Gupta
{"title":"Convergence estimates for some composition operators","authors":"Vijay Gupta","doi":"10.33205/cma.1474535","DOIUrl":null,"url":null,"abstract":"There are different methods available in literature to construct a new operator. One of the methods to construct an operator is the composition method. It is known that Baskakov operators can be achieved by composition of Post Widder $P_n$ and Sz\\'asz-Mirakjan $S_n$ operators in that order, which is a discretely defined operator. But when we consider different order composition namely $S_n\\circ P_n$, we get another different operator. Here we study such and we establish some convergence estimates for the composition operators $S_n\\circ P_n$, along with difference with other operators. Finally we found the difference between two compositions by considering numeric values.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1474535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

There are different methods available in literature to construct a new operator. One of the methods to construct an operator is the composition method. It is known that Baskakov operators can be achieved by composition of Post Widder $P_n$ and Sz\'asz-Mirakjan $S_n$ operators in that order, which is a discretely defined operator. But when we consider different order composition namely $S_n\circ P_n$, we get another different operator. Here we study such and we establish some convergence estimates for the composition operators $S_n\circ P_n$, along with difference with other operators. Finally we found the difference between two compositions by considering numeric values.
某些组成算子的收敛估计
文献中有不同的方法来构造新的算子。其中一种构建算子的方法是组合法。众所周知,巴斯卡科夫算子可以通过后维德算子 $P_n$ 和 Sz\'asz-Mirakjan 算子 $S_n$ 按顺序组成来实现,这是一个离散定义的算子。但当我们考虑不同阶的组成,即 $S_n\circ P_n$ 时,我们会得到另一个不同的算子。在此,我们将对这种情况进行研究,并为组成算子 $S_n\circ P_n$ 建立一些收敛估计,以及与其他算子的差值。最后,我们通过考虑数值来发现两个组成之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Constructive Mathematical Analysis
Constructive Mathematical Analysis Mathematics-Analysis
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信