Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
{"title":"Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training","authors":"","doi":"10.1016/j.isatra.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies the passive tracking problem of a wearable exoskeleton for lower limb rehabilitation therapy in the face of unmodeled dynamics, interactive friction, disturbance, prescribed performance constraints, and actuator faults. Adaptive neural networks and a smooth performance function are incorporated to establish a novel fault-tolerant tracking scheme, which can not only compensate for the nonlinear uncertainties and disturbance, but also handle the actuator fault with guaranteed tracking performance. A state feedback controller is presented by using the full state information and an output feedback controller is developed when the angular velocity is unavailable. The differential explosion issue of the backstepping technique is resolved by constructing a first-order filter and the unmeasurable velocity is estimated by a nonlinear observer. Semiglobal uniform boundedness stabilities of the exoskeleton system are proved via the Lyapunov direct method. The tracking performances of the designed control approaches are tested by comparative simulations.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 143-152"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002829","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the passive tracking problem of a wearable exoskeleton for lower limb rehabilitation therapy in the face of unmodeled dynamics, interactive friction, disturbance, prescribed performance constraints, and actuator faults. Adaptive neural networks and a smooth performance function are incorporated to establish a novel fault-tolerant tracking scheme, which can not only compensate for the nonlinear uncertainties and disturbance, but also handle the actuator fault with guaranteed tracking performance. A state feedback controller is presented by using the full state information and an output feedback controller is developed when the angular velocity is unavailable. The differential explosion issue of the backstepping technique is resolved by constructing a first-order filter and the unmeasurable velocity is estimated by a nonlinear observer. Semiglobal uniform boundedness stabilities of the exoskeleton system are proved via the Lyapunov direct method. The tracking performances of the designed control approaches are tested by comparative simulations.

用于下肢被动训练的康复外骨骼的自适应神经容错规定性能控制
本文研究了用于下肢康复治疗的可穿戴外骨骼在面对未建模动力学、交互摩擦、干扰、规定性能约束和致动器故障时的被动跟踪问题。该方案不仅能补偿非线性不确定性和干扰,还能在保证跟踪性能的前提下处理致动器故障。利用全状态信息提出了一种状态反馈控制器,并在角速度不可用时开发了一种输出反馈控制器。通过构建一阶滤波器解决了反步进技术的微分爆炸问题,并通过非线性观测器估计了不可测量的速度。通过 Lyapunov 直接法证明了外骨骼系统的半全局均匀有界稳定性。通过对比模拟测试了所设计控制方法的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信