{"title":"An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion","authors":"FeiXiang Yang, Tinglei Wang, Yun Huang","doi":"10.3390/axioms13060374","DOIUrl":null,"url":null,"abstract":"The problem of inverting dynamic complex matrices remains a central and intricate challenge that has garnered significant attention in scientific and mathematical research. The zeroing neural network (ZNN) has been a notable approach, utilizing time derivatives for real-time solutions in noiseless settings. However, real-world disturbances pose a significant challenge to a ZNN’s convergence. We design an accelerated dual-integral structure zeroing neural network (ADISZNN), which can enhance convergence and restrict linear noise, particularly in complex domains. Based on the Lyapunov principle, theoretical analysis proves the convergence and robustness of ADISZNN. We have selectively integrated the SBPAF activation function, and through theoretical dissection and comparative experimental validation we have affirmed the efficacy and accuracy of our activation function selection strategy. After conducting numerous experiments, we discovered oscillations and improved the model accordingly, resulting in the ADISZNN-Stable model. This advanced model surpasses current models in both linear noisy and noise-free environments, delivering a more rapid and stable convergence, marking a significant leap forward in the field.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13060374","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of inverting dynamic complex matrices remains a central and intricate challenge that has garnered significant attention in scientific and mathematical research. The zeroing neural network (ZNN) has been a notable approach, utilizing time derivatives for real-time solutions in noiseless settings. However, real-world disturbances pose a significant challenge to a ZNN’s convergence. We design an accelerated dual-integral structure zeroing neural network (ADISZNN), which can enhance convergence and restrict linear noise, particularly in complex domains. Based on the Lyapunov principle, theoretical analysis proves the convergence and robustness of ADISZNN. We have selectively integrated the SBPAF activation function, and through theoretical dissection and comparative experimental validation we have affirmed the efficacy and accuracy of our activation function selection strategy. After conducting numerous experiments, we discovered oscillations and improved the model accordingly, resulting in the ADISZNN-Stable model. This advanced model surpasses current models in both linear noisy and noise-free environments, delivering a more rapid and stable convergence, marking a significant leap forward in the field.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.