Accurate analytical evaluation of the generalized logarithmic and double Fermi–Dirac and Bose–Einstein functions

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Bahtiyar A. Mamedov, Duru Özgül
{"title":"Accurate analytical evaluation of the generalized logarithmic and double Fermi–Dirac and Bose–Einstein functions","authors":"Bahtiyar A. Mamedov,&nbsp;Duru Özgül","doi":"10.1002/ctpp.202400051","DOIUrl":null,"url":null,"abstract":"<p>The accurate definition and powerful evaluation modeling of the various generalized Fermi–Dirac and Bose–Einstein functions remain a challenging problem in various areas of physics. In this study, we develop a general analytical technique for accurately calculating logarithmic and double Fermi–Dirac and Bose–Einstein functions. The obtaining analytical formulae are established by considering the binomial expansion theorem. The obtained expressions are valid in chemical potential values between -∞ &lt;μ &lt;0 and have been designated as explicit form features, high precision, and less computing time. The calculation results are tabularly illustrated to show the consistency of the analytical relations analysis under the effect of parameters. Based on a comprehensive analysis of the results, they are potentially useful in applications to evaluate thermionic emission and astrophysics problems.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400051","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate definition and powerful evaluation modeling of the various generalized Fermi–Dirac and Bose–Einstein functions remain a challenging problem in various areas of physics. In this study, we develop a general analytical technique for accurately calculating logarithmic and double Fermi–Dirac and Bose–Einstein functions. The obtaining analytical formulae are established by considering the binomial expansion theorem. The obtained expressions are valid in chemical potential values between -∞ <μ <0 and have been designated as explicit form features, high precision, and less computing time. The calculation results are tabularly illustrated to show the consistency of the analytical relations analysis under the effect of parameters. Based on a comprehensive analysis of the results, they are potentially useful in applications to evaluate thermionic emission and astrophysics problems.

广义对数函数和双费米-狄拉克函数以及玻色-爱因斯坦函数的精确分析评估
各种广义费米-狄拉克函数和玻色-爱因斯坦函数的精确定义和强大的评估建模仍然是物理学各个领域的一个挑战性问题。在本研究中,我们开发了一种通用分析技术,用于精确计算对数和双费米-狄拉克函数和玻色-爱因斯坦函数。通过考虑二项式展开定理,我们建立了分析公式。所得到的表达式在化学势值介于-∞ <μ <0之间时有效,具有形式明确、精度高、计算时间短等特点。计算结果以表格形式展示了参数影响下分析关系分析的一致性。在对结果进行综合分析的基础上,它们在评估热电子发射和天体物理学问题的应用中具有潜在的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信