Two Models on the Unsteady Heat and Fluid Flow Induced By Stretching or Shrinking Sheets and Novel Time-Dependent Solutions

M. Turkyilmazoglu
{"title":"Two Models on the Unsteady Heat and Fluid Flow Induced By Stretching or Shrinking Sheets and Novel Time-Dependent Solutions","authors":"M. Turkyilmazoglu","doi":"10.1115/1.4065674","DOIUrl":null,"url":null,"abstract":"\n This study sheds light on unsteady heat and fluid flow problems over stretching and shrinking surfaces, enriching our understanding of these complex phenomena. We derive two mathematical models using a rigorous approach. The first model aligns with the model commonly employed by researchers in this field, but its steady-state solution remains trivial. The second model, introduced in this work, demonstrably captures the physically relevant steady-state solutions of Sakiadis [B. C. Sakiadis, AIChE J., 7, 26 (1961)] and Crane [L. J. Crane, J. Appl. Math. Phys., 21, 645 (1970)] as well as Miklavcic and Wang [M. Miklavcic, C. Y. Wang, Q. Appl. Math., 46, 283 (2006)]. Notably, we introduce new similarity solutions for the temperature field specifically within the first model. We further demonstrate that a uniform wall temperature condition leads to the optimal heat transfer rate. While similarity solutions can be derived for specific cases with the second model, non-similar solutions may be necessary for more general scenarios. We discuss the implications of our analysis for stagnation-point flow and non-Newtonian viscoelastic fluid flow problems, illuminating future research directions in the open literature.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"81 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study sheds light on unsteady heat and fluid flow problems over stretching and shrinking surfaces, enriching our understanding of these complex phenomena. We derive two mathematical models using a rigorous approach. The first model aligns with the model commonly employed by researchers in this field, but its steady-state solution remains trivial. The second model, introduced in this work, demonstrably captures the physically relevant steady-state solutions of Sakiadis [B. C. Sakiadis, AIChE J., 7, 26 (1961)] and Crane [L. J. Crane, J. Appl. Math. Phys., 21, 645 (1970)] as well as Miklavcic and Wang [M. Miklavcic, C. Y. Wang, Q. Appl. Math., 46, 283 (2006)]. Notably, we introduce new similarity solutions for the temperature field specifically within the first model. We further demonstrate that a uniform wall temperature condition leads to the optimal heat transfer rate. While similarity solutions can be derived for specific cases with the second model, non-similar solutions may be necessary for more general scenarios. We discuss the implications of our analysis for stagnation-point flow and non-Newtonian viscoelastic fluid flow problems, illuminating future research directions in the open literature.
拉伸或收缩薄片引起的非稳态热流和流体流动的两种模型及新颖的时间依赖性解决方案
这项研究揭示了拉伸和收缩表面上的非稳态热流和流体流动问题,丰富了我们对这些复杂现象的理解。我们采用严格的方法推导出两个数学模型。第一个模型与该领域研究人员常用的模型一致,但其稳态解法仍然微不足道。在这项工作中引入的第二个模型明显捕捉到了 Sakiadis [B. C. Sakiadis, AIChE J., 7, 26 (1961)] 和 Crane [L. J. Crane, J. Appl.值得注意的是,我们特别在第一个模型中引入了新的温度场相似解。我们进一步证明,均匀的壁面温度条件会带来最佳传热率。虽然相似解可以在第二种模型的特定情况下得出,但对于更普遍的情况,非相似解可能是必要的。我们讨论了我们的分析对停滞点流动和非牛顿粘弹性流体流动问题的影响,并阐明了公开文献中未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信