{"title":"Chloride transport in alkali activated materials influenced by different reaction products: a review","authors":"Tao Liu, Jianfeng Fan, Ziqiang Peng","doi":"10.1680/jmacr.23.00285","DOIUrl":null,"url":null,"abstract":"Alkali activated materials are regarded as a substitution building material of Portland Cement (PC) with high chloride resistance and low CO2 footprint. This review study provides a multi-scale perspective to understand material-product-microstructure-property relationships in terms of chloride binding behavior of AAMs. Physical and chemical chloride stability of different reaction products is summarized from nanostructure, microstructure to macro properties. The analysis of cited studies are determined to give an overview of recent progress in chloride transport in AAMs influenced by different reaction products. Results show that higher Ca/Si, Al/Si molar and alkali content increase amorphous phases formation, leading to a denser microstructure and lower chloride penetration in AAMs. Higher MgO and Al2O3 incorporation results in more formation of hydrotalcite. The enhanced physical and chemical absorption of chloride by hydrotalcite leads to higher resistance of chloride penetration in AAMs. The investigation of increasing chloride resistance can potentially focus on the increase of gels and hydrotalcite formation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"8 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00285","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alkali activated materials are regarded as a substitution building material of Portland Cement (PC) with high chloride resistance and low CO2 footprint. This review study provides a multi-scale perspective to understand material-product-microstructure-property relationships in terms of chloride binding behavior of AAMs. Physical and chemical chloride stability of different reaction products is summarized from nanostructure, microstructure to macro properties. The analysis of cited studies are determined to give an overview of recent progress in chloride transport in AAMs influenced by different reaction products. Results show that higher Ca/Si, Al/Si molar and alkali content increase amorphous phases formation, leading to a denser microstructure and lower chloride penetration in AAMs. Higher MgO and Al2O3 incorporation results in more formation of hydrotalcite. The enhanced physical and chemical absorption of chloride by hydrotalcite leads to higher resistance of chloride penetration in AAMs. The investigation of increasing chloride resistance can potentially focus on the increase of gels and hydrotalcite formation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.