Seong-Won Jin, Myeong-Seok Go, Youngu Lee, Seungwha Ryu, J. Lim
{"title":"Comprehensive correlation analysis of electromechanical behavior in high-stretchable carbon nanotube/polymer composites","authors":"Seong-Won Jin, Myeong-Seok Go, Youngu Lee, Seungwha Ryu, J. Lim","doi":"10.1088/2631-6331/ad540e","DOIUrl":null,"url":null,"abstract":"\n In this study, a comprehensive correlation analysis of highly stretchable carbon nanotube (CNT)/polymer composites was conducted to predict the change in electrical conductivities in response to uniaxial deformation. To this end, the representative volume elements (RVEs) were generated by randomly distributing CNTs in a polymer matrix using a Monte Carlo simulation algorithm. The effective electrical conductivity was then calculated through a network model. Under uniaxial tensile strain, where the length of CNTs was maintained constant and their configuration kept straight, CNT translation and rotation were considered along with the effects of tensile strain and shrinkage, incorporating Poisson's ratio. The RVE configuration was updated to account for changes in the network under these conditions. To achieve a strong correlation between the simulation and test results from the previously published works, numerous trade-off studies have been conducted on the RVE size, geometric periodicity, the length of CNT fibers, the mixing ratio of CNT fibers of CNT/polymer composites, and tensile strain. From the results it can be seen that excellent correlations can be only achieved with careful control of the aforementioned parameters.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"8 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad540e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a comprehensive correlation analysis of highly stretchable carbon nanotube (CNT)/polymer composites was conducted to predict the change in electrical conductivities in response to uniaxial deformation. To this end, the representative volume elements (RVEs) were generated by randomly distributing CNTs in a polymer matrix using a Monte Carlo simulation algorithm. The effective electrical conductivity was then calculated through a network model. Under uniaxial tensile strain, where the length of CNTs was maintained constant and their configuration kept straight, CNT translation and rotation were considered along with the effects of tensile strain and shrinkage, incorporating Poisson's ratio. The RVE configuration was updated to account for changes in the network under these conditions. To achieve a strong correlation between the simulation and test results from the previously published works, numerous trade-off studies have been conducted on the RVE size, geometric periodicity, the length of CNT fibers, the mixing ratio of CNT fibers of CNT/polymer composites, and tensile strain. From the results it can be seen that excellent correlations can be only achieved with careful control of the aforementioned parameters.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico