{"title":"Increased plasma levels of neuro-related proteins in patients with stress-related exhaustion: A longitudinal study","authors":"Caroline Hansson , Emina Hadžibajramović , Per-Arne Svensson , Ingibjörg H. Jonsdottir","doi":"10.1016/j.psyneuen.2024.107091","DOIUrl":null,"url":null,"abstract":"<div><p>Exhaustion disorder (ED) is a stress-related disorder characterized by physical and mental symptoms of exhaustion. Recent data suggest that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED. The aims of this study were to investigate if plasma levels of neuro-related proteins differ between patients with ED and healthy controls, and, if so, to investigate if these differences persist over time. Using the Olink Neuro Exploratory panel, we quantified the plasma levels of 92 neuro-related proteins in 163 ED patients at the time of diagnosis (baseline), 149 patients at long-term follow-up (7–12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. We found that the plasma levels of 40 proteins were significantly higher in the ED group at baseline compared with the control group. Out of these, the plasma levels of 36 proteins were significantly lower in the ED group at follow-up compared with the same group at baseline and the plasma levels of four proteins did not significantly differ between the groups. At follow-up, the plasma levels of two proteins were significantly lower in the ED group compared with the control group. These data support the hypothesis that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED.</p></div>","PeriodicalId":20836,"journal":{"name":"Psychoneuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306453024001355/pdfft?md5=a35720aa6dd4e28f1ab6c5f3cd4c09ee&pid=1-s2.0-S0306453024001355-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoneuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306453024001355","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Exhaustion disorder (ED) is a stress-related disorder characterized by physical and mental symptoms of exhaustion. Recent data suggest that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED. The aims of this study were to investigate if plasma levels of neuro-related proteins differ between patients with ED and healthy controls, and, if so, to investigate if these differences persist over time. Using the Olink Neuro Exploratory panel, we quantified the plasma levels of 92 neuro-related proteins in 163 ED patients at the time of diagnosis (baseline), 149 patients at long-term follow-up (7–12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. We found that the plasma levels of 40 proteins were significantly higher in the ED group at baseline compared with the control group. Out of these, the plasma levels of 36 proteins were significantly lower in the ED group at follow-up compared with the same group at baseline and the plasma levels of four proteins did not significantly differ between the groups. At follow-up, the plasma levels of two proteins were significantly lower in the ED group compared with the control group. These data support the hypothesis that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED.
期刊介绍:
Psychoneuroendocrinology publishes papers dealing with the interrelated disciplines of psychology, neurobiology, endocrinology, immunology, neurology, and psychiatry, with an emphasis on multidisciplinary studies aiming at integrating these disciplines in terms of either basic research or clinical implications. One of the main goals is to understand how a variety of psychobiological factors interact in the expression of the stress response as it relates to the development and/or maintenance of neuropsychiatric illnesses.