{"title":"Chemical modifications, ions and water molecules in the sub-2 Å resolution structure of the human 80S ribosome","authors":"","doi":"10.1038/s41594-024-01275-w","DOIUrl":null,"url":null,"abstract":"Using next-generation cryo-EM and mass spectrometry, we identified 235 chemical modifications in the sub-2 Å resolution structure of the full human 80S ribosome. The newly identified rRNA modifications were found to create new hydrogen bond patterns for riboses and uridines. Ion visualization revealed that Mg2+-associated water molecules are variably substituted by side chains. This study provides the molecular basis for the stabilization of A–U or A–Ψ base pairs and RNA–protein interactions.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 8","pages":"1152-1153"},"PeriodicalIF":12.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01275-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Using next-generation cryo-EM and mass spectrometry, we identified 235 chemical modifications in the sub-2 Å resolution structure of the full human 80S ribosome. The newly identified rRNA modifications were found to create new hydrogen bond patterns for riboses and uridines. Ion visualization revealed that Mg2+-associated water molecules are variably substituted by side chains. This study provides the molecular basis for the stabilization of A–U or A–Ψ base pairs and RNA–protein interactions.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.