Jicheng Cui , Dongmei Zhang , Hui Qiao , Zeyu Yan , Wenxia Zhang , Yingqi Li
{"title":"MnO2-coated nanodiamond-driven photodynamic therapy for enhanced antitumor effect by addressing hypoxia and glutathione depletion","authors":"Jicheng Cui , Dongmei Zhang , Hui Qiao , Zeyu Yan , Wenxia Zhang , Yingqi Li","doi":"10.1016/j.partic.2024.05.016","DOIUrl":null,"url":null,"abstract":"<div><p>The generation of reactive oxygen species (ROS) at the tumor site to induce destruction is emerging as a novel strategy for cancer treatment, which involves photodynamic therapy (PDT). Nevertheless, tumors typically create a hypoxic environment and are equipped with an endogenous antioxidant defense system that could potentially impede the efficiency of the therapeutic approach. To overcome these drawbacks, herein, a tumor microenvironment-responsive the ND-PAA-CD-Ce6@MnO<sub>2</sub> (NPCC@M) delivery system was fabricated by disulfide bond coupling chlorin e6 (Ce6) to nanodiamond (ND) and further wrapped by MnO<sub>2</sub> nanosheets to facilitate PDT. The use of disulfide bond not only stabilizes Ce6 in the blood circulation to prevent premature leakage, but also destroys the antioxidant barrier of overexpressed glutathione (GSH) in tumor cells. Moreover, the outer MnO<sub>2</sub> was rapidly degraded by the endogenous hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in the acidic pH and GSH within the tumor cells, which leads to an abundance of O<sub>2</sub> and while increases the level of <sup>1</sup>O<sub>2</sub> under laser irradiation. The results eventually broke the redox homeostasis and attenuate hypoxia, thereby inducing apoptosis and necrosis of tumor cells. Detailed <em>in vitro</em> and <em>in vivo</em> biological effect has revealed a good biosafety profile and a high tumor suppression effect. Such a novel ND-based system with tumor microenvironment-modulating capability to elevate oxygen content and promote GSH consumption in tumor cells opens new opportunities for enhanced ROS treatment paradigms.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"92 ","pages":"Pages 305-315"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124000956","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of reactive oxygen species (ROS) at the tumor site to induce destruction is emerging as a novel strategy for cancer treatment, which involves photodynamic therapy (PDT). Nevertheless, tumors typically create a hypoxic environment and are equipped with an endogenous antioxidant defense system that could potentially impede the efficiency of the therapeutic approach. To overcome these drawbacks, herein, a tumor microenvironment-responsive the ND-PAA-CD-Ce6@MnO2 (NPCC@M) delivery system was fabricated by disulfide bond coupling chlorin e6 (Ce6) to nanodiamond (ND) and further wrapped by MnO2 nanosheets to facilitate PDT. The use of disulfide bond not only stabilizes Ce6 in the blood circulation to prevent premature leakage, but also destroys the antioxidant barrier of overexpressed glutathione (GSH) in tumor cells. Moreover, the outer MnO2 was rapidly degraded by the endogenous hydrogen peroxide (H2O2) in the acidic pH and GSH within the tumor cells, which leads to an abundance of O2 and while increases the level of 1O2 under laser irradiation. The results eventually broke the redox homeostasis and attenuate hypoxia, thereby inducing apoptosis and necrosis of tumor cells. Detailed in vitro and in vivo biological effect has revealed a good biosafety profile and a high tumor suppression effect. Such a novel ND-based system with tumor microenvironment-modulating capability to elevate oxygen content and promote GSH consumption in tumor cells opens new opportunities for enhanced ROS treatment paradigms.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.