Study on the force chain characteristics with coal dust layer and the three-body contact stiffness

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Xinwei Yang , Dongxuan Wu , Hongyue Chen , Dong Wang
{"title":"Study on the force chain characteristics with coal dust layer and the three-body contact stiffness","authors":"Xinwei Yang ,&nbsp;Dongxuan Wu ,&nbsp;Hongyue Chen ,&nbsp;Dong Wang","doi":"10.1016/j.partic.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><p>To explore the influence of the meso-mechanical behaviors of the wet coal dust layers on the contact stiffness of mechanical bonding surfaces, a three-body contact model incorporating an interface with wet coal dust was constructed based on breakage theory. The model considered the mechanical surface morphology and contact characteristics of the wet coal dust. The force chain evolution laws of the wet coal dust layer were elucidated under the effects of gap filling and the cover layer, and the bearing characteristics of the three-body contact bonding surfaces were revealed by quantitative analyses of the number, length, collimation coefficient, and coordination number of the force chains within the wet coal dust layer. Finally, the three-body normal contact stiffness under various preload forces was computed and experimentally validated. The results demonstrate that the external load transfer path of the three-body contact bonding surfaces was from mechanical surface (macroscopic stress) to wet coal dust layer (mesoscopic force chains) and then to mechanical surface (peaks and valleys). The interactions among these three elements contributed to transforming the distributions of the macroscopic stresses and mesoscopic force chains to the locations at the peaks and valleys of the mechanical surface. Among them, the proportion of short force chains in the wet coal dust layer increased from approximately 0.8% to 91%, while the proportion of long force chains exhibited an opposite changing trend. The force chain collimation coefficient initially increased and subsequently stabilized, reaching a maximum value of 0.93. A large number of broken, small particles in the wet coal dust layer mainly served to fill the gaps among large particles. The maximum relative error between the experimental and simulated values on the three-body contact stiffness is 7.26%, indicating that the simulation results can be an approximate substitute for the experimental results with a certain degree of accuracy and practicality. The research results are of great significance for understanding the contact characteristics of mechanical surfaces containing particulate media.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"92 ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124000932","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the influence of the meso-mechanical behaviors of the wet coal dust layers on the contact stiffness of mechanical bonding surfaces, a three-body contact model incorporating an interface with wet coal dust was constructed based on breakage theory. The model considered the mechanical surface morphology and contact characteristics of the wet coal dust. The force chain evolution laws of the wet coal dust layer were elucidated under the effects of gap filling and the cover layer, and the bearing characteristics of the three-body contact bonding surfaces were revealed by quantitative analyses of the number, length, collimation coefficient, and coordination number of the force chains within the wet coal dust layer. Finally, the three-body normal contact stiffness under various preload forces was computed and experimentally validated. The results demonstrate that the external load transfer path of the three-body contact bonding surfaces was from mechanical surface (macroscopic stress) to wet coal dust layer (mesoscopic force chains) and then to mechanical surface (peaks and valleys). The interactions among these three elements contributed to transforming the distributions of the macroscopic stresses and mesoscopic force chains to the locations at the peaks and valleys of the mechanical surface. Among them, the proportion of short force chains in the wet coal dust layer increased from approximately 0.8% to 91%, while the proportion of long force chains exhibited an opposite changing trend. The force chain collimation coefficient initially increased and subsequently stabilized, reaching a maximum value of 0.93. A large number of broken, small particles in the wet coal dust layer mainly served to fill the gaps among large particles. The maximum relative error between the experimental and simulated values on the three-body contact stiffness is 7.26%, indicating that the simulation results can be an approximate substitute for the experimental results with a certain degree of accuracy and practicality. The research results are of great significance for understanding the contact characteristics of mechanical surfaces containing particulate media.

Abstract Image

煤尘层与三体接触刚度的力链特性研究
为了探索湿煤粉层的介观力学行为对机械结合面接触刚度的影响,我们根据破损理论构建了一个包含湿煤粉界面的三体接触模型。该模型考虑了湿煤粉的机械表面形态和接触特性。阐明了湿煤粉层在间隙填充和覆盖层作用下的力链演化规律,并通过定量分析湿煤粉层内力链的数量、长度、准直系数和配位数,揭示了三体接触结合面的承载特性。最后,计算了各种预紧力作用下的三体法向接触刚度,并进行了实验验证。结果表明,三体接触结合面的外部载荷传递路径是从机械表面(宏观应力)到湿煤尘层(中观力链),再到机械表面(峰谷)。这三个要素之间的相互作用促使宏观应力和介观力链的分布向机械表面的峰谷位置转化。其中,湿煤粉层中短力链的比例从约 0.8% 增加到 91%,而长力链的比例则呈现相反的变化趋势。力链准直系数最初增加,随后趋于稳定,最大值为 0.93。湿煤粉层中大量破碎的小颗粒主要起到填补大颗粒间空隙的作用。三体接触刚度实验值与模拟值的最大相对误差为 7.26%,表明模拟结果可以近似替代实验结果,具有一定的准确性和实用性。该研究成果对于了解含有颗粒介质的机械表面的接触特性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信