Strengthening and toughening of hard epoxy vitrimer nanocomposites with interfacial covalent binding and microphase separation

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zhiqiang Chen, Zhen Li, Xubin Wang, Chenyu Jin, Dichao Ning
{"title":"Strengthening and toughening of hard epoxy vitrimer nanocomposites with interfacial covalent binding and microphase separation","authors":"Zhiqiang Chen,&nbsp;Zhen Li,&nbsp;Xubin Wang,&nbsp;Chenyu Jin,&nbsp;Dichao Ning","doi":"10.1016/j.compscitech.2024.110684","DOIUrl":null,"url":null,"abstract":"<div><p>Vitrimers with dynamic covalent bonds combine the merits of thermosets and thermoplastics, opening up new opportunities for science and industry. The attainment of enhanced mechanical performance without compromising dynamic reprocessability poses a significant obstacle to vitrimer materials. Designing vitrimer nanocomposites from interfacial and structural aspects is promising to solve this problem. Herein, strengthening and toughening of hard epoxy vitrimer using nanosilica have been successfully achieved by introducing interfacial covalent binding and microphase separation. Performing interfacial covalent binding between epoxide-modified silica nanoparticles and hard epoxy vitrimer matrix improves interfacial compatibility and nanoparticle dispersion. Controlling the proportion of silica nanoparticles yields two types of microstructures, including a uniformly dispersed material at low nanoparticle loadings and unique microphase separation at high nanoparticle loadings. Particularly, silica reinforcement accompanied with phase separation exhibits a substantial enhancement in Young's modulus, tensile strength, and fracture toughness while achieving good stretchability. In addition, the silica-epoxy vitrimer nanocomposites preserve excellent reprocessability not inferior to the pristine vitrimer. The resulting nanocomposites show potential applications in bonding, recycling, and shape morphing. The concepts and methodologies presented in this work will enlighten future vitrimer material design and functional applications.</p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824002549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Vitrimers with dynamic covalent bonds combine the merits of thermosets and thermoplastics, opening up new opportunities for science and industry. The attainment of enhanced mechanical performance without compromising dynamic reprocessability poses a significant obstacle to vitrimer materials. Designing vitrimer nanocomposites from interfacial and structural aspects is promising to solve this problem. Herein, strengthening and toughening of hard epoxy vitrimer using nanosilica have been successfully achieved by introducing interfacial covalent binding and microphase separation. Performing interfacial covalent binding between epoxide-modified silica nanoparticles and hard epoxy vitrimer matrix improves interfacial compatibility and nanoparticle dispersion. Controlling the proportion of silica nanoparticles yields two types of microstructures, including a uniformly dispersed material at low nanoparticle loadings and unique microphase separation at high nanoparticle loadings. Particularly, silica reinforcement accompanied with phase separation exhibits a substantial enhancement in Young's modulus, tensile strength, and fracture toughness while achieving good stretchability. In addition, the silica-epoxy vitrimer nanocomposites preserve excellent reprocessability not inferior to the pristine vitrimer. The resulting nanocomposites show potential applications in bonding, recycling, and shape morphing. The concepts and methodologies presented in this work will enlighten future vitrimer material design and functional applications.

Abstract Image

利用界面共价结合和微相分离实现硬环氧树脂玻璃聚合物纳米复合材料的增强和增韧
具有动态共价键的玻璃聚合物结合了热固性塑料和热塑性塑料的优点,为科学和工业带来了新的机遇。如何在不影响动态再加工性的前提下提高机械性能是玻璃聚合物材料面临的一个重大障碍。从界面和结构方面设计玻璃聚合物纳米复合材料有望解决这一问题。在此,通过引入界面共价结合和微相分离,利用纳米二氧化硅成功实现了硬环氧玻璃聚合物的增强和增韧。环氧改性纳米二氧化硅颗粒与硬环氧树脂玻璃聚合物基体之间的界面共价结合改善了界面相容性和纳米颗粒的分散性。控制二氧化硅纳米粒子的比例可产生两种微观结构,包括低纳米粒子负载时的均匀分散材料和高纳米粒子负载时的独特微相分离。特别是,伴随着相分离的二氧化硅增强材料在实现良好拉伸性的同时,杨氏模量、拉伸强度和断裂韧性也得到了大幅提高。此外,二氧化硅-环氧树脂玻璃纤维纳米复合材料还具有出色的再加工性,丝毫不逊色于原始玻璃纤维。由此产生的纳米复合材料在粘接、回收利用和形状变形方面具有潜在的应用前景。这项工作中提出的概念和方法将为未来的玻璃聚合物材料设计和功能应用提供启迪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信