{"title":"Lp maximal regularity for vector-valued Schrödinger operators","authors":"Davide Addona , Vincenzo Leone , Luca Lorenzi , Abdelaziz Rhandi","doi":"10.1016/j.matpur.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the vector-valued Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where the potential term <em>V</em> is a matrix-valued function whose entries belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and, for every <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Assuming further that the minimal eigenvalue of <em>V</em> belongs to some reverse Hölder class of order <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>, for <em>p</em> in between 1 and some <em>q</em>, and generation results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider the vector-valued Schrödinger operator , where the potential term V is a matrix-valued function whose entries belong to and, for every , is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in . Assuming further that the minimal eigenvalue of V belongs to some reverse Hölder class of order , we obtain maximal inequality in , for p in between 1 and some q, and generation results.