Lp maximal regularity for vector-valued Schrödinger operators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Davide Addona , Vincenzo Leone , Luca Lorenzi , Abdelaziz Rhandi
{"title":"Lp maximal regularity for vector-valued Schrödinger operators","authors":"Davide Addona ,&nbsp;Vincenzo Leone ,&nbsp;Luca Lorenzi ,&nbsp;Abdelaziz Rhandi","doi":"10.1016/j.matpur.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the vector-valued Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where the potential term <em>V</em> is a matrix-valued function whose entries belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and, for every <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Assuming further that the minimal eigenvalue of <em>V</em> belongs to some reverse Hölder class of order <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>, for <em>p</em> in between 1 and some <em>q</em>, and generation results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the vector-valued Schrödinger operator Δ+V, where the potential term V is a matrix-valued function whose entries belong to Lloc1(Rd) and, for every xRd, V(x) is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in L1(Rd,Rm). Assuming further that the minimal eigenvalue of V belongs to some reverse Hölder class of order q(1,){}, we obtain maximal inequality in Lp(Rd,Rm), for p in between 1 and some q, and generation results.

矢量薛定谔算子的 Lp 最大正则性
在本文中,我们考虑了矢量薛定谔算子 -Δ+V,其中势项 V 是一个矩阵值函数,其项属于 Lloc1(Rd),并且对于每个 x∈Rd,V(x) 是一个对称的非负定矩阵,具有非正对角项,并且特征值相互可比。对于这一类势项,我们可以在 L1(Rd,Rm) 中得到最大不等式。进一步假定 V 的最小特征值属于阶数 q∈(1,∞)∪{∞} 的某个反向荷尔德类,对于 p 介于 1 和某个 q 之间,我们将得到 Lp(Rd,Rm) 中的最大不等式,并产生结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信