Lp maximal regularity for vector-valued Schrödinger operators

IF 2.1 1区 数学 Q1 MATHEMATICS
Davide Addona , Vincenzo Leone , Luca Lorenzi , Abdelaziz Rhandi
{"title":"Lp maximal regularity for vector-valued Schrödinger operators","authors":"Davide Addona ,&nbsp;Vincenzo Leone ,&nbsp;Luca Lorenzi ,&nbsp;Abdelaziz Rhandi","doi":"10.1016/j.matpur.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the vector-valued Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where the potential term <em>V</em> is a matrix-valued function whose entries belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and, for every <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Assuming further that the minimal eigenvalue of <em>V</em> belongs to some reverse Hölder class of order <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>, for <em>p</em> in between 1 and some <em>q</em>, and generation results.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"187 ","pages":"Pages 171-206"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000576","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the vector-valued Schrödinger operator Δ+V, where the potential term V is a matrix-valued function whose entries belong to Lloc1(Rd) and, for every xRd, V(x) is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in L1(Rd,Rm). Assuming further that the minimal eigenvalue of V belongs to some reverse Hölder class of order q(1,){}, we obtain maximal inequality in Lp(Rd,Rm), for p in between 1 and some q, and generation results.

矢量薛定谔算子的 Lp 最大正则性
在本文中,我们考虑了矢量薛定谔算子 -Δ+V,其中势项 V 是一个矩阵值函数,其项属于 Lloc1(Rd),并且对于每个 x∈Rd,V(x) 是一个对称的非负定矩阵,具有非正对角项,并且特征值相互可比。对于这一类势项,我们可以在 L1(Rd,Rm) 中得到最大不等式。进一步假定 V 的最小特征值属于阶数 q∈(1,∞)∪{∞} 的某个反向荷尔德类,对于 p 介于 1 和某个 q 之间,我们将得到 Lp(Rd,Rm) 中的最大不等式,并产生结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信