Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1117/1.JBO.29.6.066005
Brian Cottle, Sarthak Tiwari, Aditya Kaza, Frank B Sachse, Robert Hitchcock
{"title":"Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy.","authors":"Brian Cottle, Sarthak Tiwari, Aditya Kaza, Frank B Sachse, Robert Hitchcock","doi":"10.1117/1.JBO.29.6.066005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.</p><p><strong>Aim: </strong>To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.</p><p><strong>Approach: </strong>A custom LSS probe was used to gather spectral data from locations across 14 excised human pediatric nodal tissue samples (8 sinus nodes, 6 atrioventricular nodes). The LSS spectra were used to train linear and neural-network-based regressor models to predict tissue composition characteristics derived from the 3D models.</p><p><strong>Results: </strong>Nodal tissue region nuclear densities were reported. A linear model trained to regress nuclear density from spectra achieved a prediction r-squared of 0.64 and a concordance correlation coefficient of 0.78.</p><p><strong>Conclusions: </strong>These methods build on previous studies suggesting that LSS measurements combined with machine learning signal processing can provide clinically relevant cardiac tissue composition.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 6","pages":"066005"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.6.066005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.

Aim: To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.

Approach: A custom LSS probe was used to gather spectral data from locations across 14 excised human pediatric nodal tissue samples (8 sinus nodes, 6 atrioventricular nodes). The LSS spectra were used to train linear and neural-network-based regressor models to predict tissue composition characteristics derived from the 3D models.

Results: Nodal tissue region nuclear densities were reported. A linear model trained to regress nuclear density from spectra achieved a prediction r-squared of 0.64 and a concordance correlation coefficient of 0.78.

Conclusions: These methods build on previous studies suggesting that LSS measurements combined with machine learning signal processing can provide clinically relevant cardiac tissue composition.

心脏组织的术中特征描述:光散射光谱学的潜力。
意义重大:心脏传导系统受损仍是手术治疗先天性心脏病的最大风险之一。这项工作展示了如何利用光散射光谱学(LSS)对心脏组织区域进行非破坏性表征。目的:介绍一种将组织成分信息与特定位置的 LSS 数据关联起来的方法,并进一步评估作为非破坏性组织表征方法的 LSS 和机器学习系统:使用定制的 LSS 探头从 14 个切除的人体小儿结节组织样本(8 个窦房结,6 个房室结)的不同位置收集光谱数据。LSS 频谱用于训练线性模型和基于神经网络的回归模型,以预测三维模型得出的组织成分特征:结果:报告了结节组织区域的核密度。通过训练线性模型对光谱中的核密度进行回归,预测 r 平方为 0.64,一致性相关系数为 0.78:这些方法建立在以往研究的基础上,表明 LSS 测量与机器学习信号处理相结合可提供临床相关的心脏组织成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信