Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2024-09-03 DOI:10.1093/plcell/koae168
Richard G Dorrell, Youjun Zhang, Yue Liang, Nolwenn Gueguen, Tomomi Nonoyama, Dany Croteau, Mathias Penot-Raquin, Sandrine Adiba, Benjamin Bailleul, Valérie Gros, Juan José Pierella Karlusich, Nathanaël Zweig, Alisdair R Fernie, Juliette Jouhet, Eric Maréchal, Chris Bowler
{"title":"Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid.","authors":"Richard G Dorrell, Youjun Zhang, Yue Liang, Nolwenn Gueguen, Tomomi Nonoyama, Dany Croteau, Mathias Penot-Raquin, Sandrine Adiba, Benjamin Bailleul, Valérie Gros, Juan José Pierella Karlusich, Nathanaël Zweig, Alisdair R Fernie, Juliette Jouhet, Eric Maréchal, Chris Bowler","doi":"10.1093/plcell/koae168","DOIUrl":null,"url":null,"abstract":"<p><p>Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae168","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.

硅藻质体中低级糖酵解-葡萄糖生成的互补环境分析和功能特征。
通过卡尔文-本森-巴塞尔循环固定在叶绿体中的有机碳可转向不同的代谢命运,包括细胞质和线粒体呼吸、葡萄糖生成以及通过丙酮酸枢纽合成各种质体代谢产物。在植物中,丙酮酸主要通过细胞质糖酵解产生,但已知在非光合组织中存在一种以质体为目标的低级糖酵解途径。在这里,我们描述了硅藻(与植物关系密切的重要生态海洋藻类)中的下质体糖酵解-葡聚糖生成途径,该途径可使甘油醛-3-磷酸和磷酸烯醇-丙酮酸直接相互转化。我们的研究表明,完成硅藻质体糖酵解-葡萄糖生成过程所需的两种可逆酶--烯醇酶和双磷酸-甘油酸变异酶(PGAM)--起源于线粒体靶向呼吸同工酶的复制。通过 CRISPR-Cas9 诱变、"omic "综合分析以及对硅藻 Phaeodactylum tricornutum 中表达的酶的动力学测量,我们提出了证据,证明这一途径将质体的甘油醛-3-磷酸转移到丙酮酸枢纽,也可能在葡萄糖生成方向发挥作用。考虑到实验数据,我们表明这一途径具有不同的作用,尤其取决于日长和环境温度,并表明在硅藻丰富的高纬度海洋中,cpEnolase 和 cpPGAM 基因的表达水平较高。我们的数据为人们提供了进化、元基因组学和功能方面的见解,使人们了解到一个鲜为人知但在进化过程中反复出现的质体代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信