Shaoling Zhao, Qian Lv, Ge Zhang, Jiangtao Zhang, Heqiu Wang, Jianmin Zhang, Meiyun Wang, Zheng Wang
{"title":"Quantitative Expression of Latent Disease Factors in Individuals Associated with Psychopathology Dimensions and Treatment Response.","authors":"Shaoling Zhao, Qian Lv, Ge Zhang, Jiangtao Zhang, Heqiu Wang, Jianmin Zhang, Meiyun Wang, Zheng Wang","doi":"10.1007/s12264-024-01224-z","DOIUrl":null,"url":null,"abstract":"<p><p>Psychiatric comorbidity is common in symptom-based diagnoses like autism spectrum disorder (ASD), attention/deficit hyper-activity disorder (ADHD), and obsessive-compulsive disorder (OCD). However, these co-occurring symptoms mediated by shared and/or distinct neural mechanisms are difficult to profile at the individual level. Capitalizing on unsupervised machine learning with a hierarchical Bayesian framework, we derived latent disease factors from resting-state functional connectivity data in a hybrid cohort of ASD and ADHD and delineated individual associations with dimensional symptoms based on canonical correlation analysis. Models based on the same factors generalized to previously unseen individuals in a subclinical cohort and one local OCD database with a subset of patients undergoing neurosurgical intervention. Four factors, identified as variably co-expressed in each patient, were significantly correlated with distinct symptom domains (r = -0.26-0.53, P < 0.05): behavioral regulation (Factor-1), communication (Factor-2), anxiety (Factor-3), adaptive behaviors (Factor-4). Moreover, we demonstrated Factor-1 expressed in patients with OCD and Factor-3 expressed in participants with anxiety, at the degree to which factor expression was significantly predictive of individual symptom scores (r = 0.18-0.5, P < 0.01). Importantly, peri-intervention changes in Factor-1 of OCD were associated with variable treatment outcomes (r = 0.39, P < 0.05). Our results indicate that these data-derived latent disease factors quantify individual factor expression to inform dimensional symptom and treatment outcomes across cohorts, which may promote quantitative psychiatric diagnosis and personalized intervention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1667-1680"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01224-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Psychiatric comorbidity is common in symptom-based diagnoses like autism spectrum disorder (ASD), attention/deficit hyper-activity disorder (ADHD), and obsessive-compulsive disorder (OCD). However, these co-occurring symptoms mediated by shared and/or distinct neural mechanisms are difficult to profile at the individual level. Capitalizing on unsupervised machine learning with a hierarchical Bayesian framework, we derived latent disease factors from resting-state functional connectivity data in a hybrid cohort of ASD and ADHD and delineated individual associations with dimensional symptoms based on canonical correlation analysis. Models based on the same factors generalized to previously unseen individuals in a subclinical cohort and one local OCD database with a subset of patients undergoing neurosurgical intervention. Four factors, identified as variably co-expressed in each patient, were significantly correlated with distinct symptom domains (r = -0.26-0.53, P < 0.05): behavioral regulation (Factor-1), communication (Factor-2), anxiety (Factor-3), adaptive behaviors (Factor-4). Moreover, we demonstrated Factor-1 expressed in patients with OCD and Factor-3 expressed in participants with anxiety, at the degree to which factor expression was significantly predictive of individual symptom scores (r = 0.18-0.5, P < 0.01). Importantly, peri-intervention changes in Factor-1 of OCD were associated with variable treatment outcomes (r = 0.39, P < 0.05). Our results indicate that these data-derived latent disease factors quantify individual factor expression to inform dimensional symptom and treatment outcomes across cohorts, which may promote quantitative psychiatric diagnosis and personalized intervention.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.