Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ian S. Yunus , Graham A. Hudson , Yan Chen , Jennifer W. Gin , Joonhoon Kim , Edward E.K. Baidoo , Christopher J. Petzold , Paul D. Adams , Blake A. Simmons , Aindrila Mukhopadhyay , Jay D. Keasling , Taek Soon Lee
{"title":"Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida","authors":"Ian S. Yunus ,&nbsp;Graham A. Hudson ,&nbsp;Yan Chen ,&nbsp;Jennifer W. Gin ,&nbsp;Joonhoon Kim ,&nbsp;Edward E.K. Baidoo ,&nbsp;Christopher J. Petzold ,&nbsp;Paul D. Adams ,&nbsp;Blake A. Simmons ,&nbsp;Aindrila Mukhopadhyay ,&nbsp;Jay D. Keasling ,&nbsp;Taek Soon Lee","doi":"10.1016/j.ymben.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO<sub>2</sub> has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of <sup>13</sup>C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of <em>Pseudomonas putida</em> KT2440 as platform for shinorine production.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 69-82"},"PeriodicalIF":6.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000740/pdfft?md5=44465b68d63fbfbca8dde006226cbcc1&pid=1-s2.0-S1096717624000740-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000740","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.

利用假单胞菌生产抗衰老防晒化合物的系统工程。
数千年来,人们一直使用防晒霜来保护皮肤免受紫外线辐射。然而,由于含有氧苯酮、氧化锌和二氧化钛的现代商业防晒霜对人类健康和环境的负面影响,它们的使用引起了人们的关注。在本研究中,我们旨在建立一个高效的微生物平台,用于生产具有抗衰老特性的紫外线吸收化合物--歆诺林。首先,我们通过分析先前研究中的中心碳通量分布数据以及基因组尺度代谢模型(GEM)的预测,有条不紊地选择了生产霞糠碱的合适宿主。我们通过 CRISPRi 介导的下调来提高歆碱的生产率,并利用散射蛋白质组学来确定潜在的竞争途径。与此同时,我们通过改进设计、优化启动子的使用和改变核糖体结合位点的强度,改进了歆碱的生物合成途径。最后,我们在不同条件下进行了氨基酸喂养实验,以确定生产歆碱的关键限制因素。该研究结合了 13C 代谢通量分析、GEMs、合成生物学、CRISPRi 介导的基因下调和 omics 分析等元分析方法,提高了歆碱的产量,证明了假单胞菌 KT2440 作为歆碱生产平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信