Xiaoyun Shen, Rongyun Mai, Xiao Han, Qi Wang, Yifan Wang, Tong Ji, Yifan Tong, Ping Chen, Jia Zhao, Xiaoyan He, Tong Wen, Rong Liang, Yan Lin, Xiaoling Luo, Xiujun Cai
{"title":"BTLA deficiency promotes HSC activation and protects against hepatic ischemia-reperfusion injury.","authors":"Xiaoyun Shen, Rongyun Mai, Xiao Han, Qi Wang, Yifan Wang, Tong Ji, Yifan Tong, Ping Chen, Jia Zhao, Xiaoyan He, Tong Wen, Rong Liang, Yan Lin, Xiaoling Luo, Xiujun Cai","doi":"10.1097/HC9.0000000000000449","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Hepatic ischemia-reperfusion injury (IRI) is unavoidable even despite the development of more effective surgical approaches. During hepatic IRI, activated HSC (aHSC) are involved in liver injury and recovery.</p><p><strong>Approach and result: </strong>A proportion of aHSC increased significantly both in the mouse liver tissues with IRI and in the primary mouse HSCs and LX-2 cells during hypoxia-reoxygenation. \"Loss-of-function\" experiments revealed that depleting aHSC with gliotoxin exacerbated liver damage in IRI mice. Subsequently, we found that the transcription of mRNA and the expression of B and T lymphocyte attenuator (BTLA) protein were lower in aHSC compared with quiescent HSCs. Interestingly, overexpression or knockdown of BTLA resulted in opposite changes in the activation of specific markers for HSCs such as collagen type I alpha 1, α-smooth muscle actin, and Vimentin. Moreover, the upregulation of these markers was also observed in the liver tissues of global BLTA-deficient (BTLA-/-) mice and was higher after hepatic IRI. Compared with wild-type mice, aHSC were higher, and liver injury was lower in BTLA-/- mice following IRI. However, the depletion of aHSC reversed these effects. In addition, the depletion of aHSC significantly exacerbated liver damage in BTLA-/- mice with hepatic IRI. Furthermore, the TGF-β1 signaling pathway was identified as a potential mechanism for BTLA to negatively regulate the activation of HSCs in vivo and in vitro.</p><p><strong>Conclusions: </strong>These novel findings revealed a critical role of BTLA. Particularly, the receptor inhibits HSC-activated signaling in acute IRI, implying that it is a potential immunotherapeutic target for decreasing the IRI risk.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000449","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Hepatic ischemia-reperfusion injury (IRI) is unavoidable even despite the development of more effective surgical approaches. During hepatic IRI, activated HSC (aHSC) are involved in liver injury and recovery.
Approach and result: A proportion of aHSC increased significantly both in the mouse liver tissues with IRI and in the primary mouse HSCs and LX-2 cells during hypoxia-reoxygenation. "Loss-of-function" experiments revealed that depleting aHSC with gliotoxin exacerbated liver damage in IRI mice. Subsequently, we found that the transcription of mRNA and the expression of B and T lymphocyte attenuator (BTLA) protein were lower in aHSC compared with quiescent HSCs. Interestingly, overexpression or knockdown of BTLA resulted in opposite changes in the activation of specific markers for HSCs such as collagen type I alpha 1, α-smooth muscle actin, and Vimentin. Moreover, the upregulation of these markers was also observed in the liver tissues of global BLTA-deficient (BTLA-/-) mice and was higher after hepatic IRI. Compared with wild-type mice, aHSC were higher, and liver injury was lower in BTLA-/- mice following IRI. However, the depletion of aHSC reversed these effects. In addition, the depletion of aHSC significantly exacerbated liver damage in BTLA-/- mice with hepatic IRI. Furthermore, the TGF-β1 signaling pathway was identified as a potential mechanism for BTLA to negatively regulate the activation of HSCs in vivo and in vitro.
Conclusions: These novel findings revealed a critical role of BTLA. Particularly, the receptor inhibits HSC-activated signaling in acute IRI, implying that it is a potential immunotherapeutic target for decreasing the IRI risk.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.