Ranúsia Maria de Melo Lopes, Cristiani Viegas Brandão Grisi, Jorge Luiz Santos de Almeida, Janiele Ferreira da Silva, Camila Sampaio Mangolim, Solange de Sousa, Leonardo Augusto Fonseca Pascoal
{"title":"Effect of the addition of black garlic on the quality parameters of jerked beef meat with pork.","authors":"Ranúsia Maria de Melo Lopes, Cristiani Viegas Brandão Grisi, Jorge Luiz Santos de Almeida, Janiele Ferreira da Silva, Camila Sampaio Mangolim, Solange de Sousa, Leonardo Augusto Fonseca Pascoal","doi":"10.1177/10820132241257280","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this work was to evaluate the effects of the replacement of nitrite by natural antioxidants from black garlic (BG) on the quality parameters of jerked beef meat with pork for 60 days. Four formulations were prepared: control, 0.02% of sodium nitrite in brine curing, w/v (CON); 1.5% BG in brine curing, w/v (ASU); 1.5% BG in dry curing, w/w (ASS); and 1.5% of BG in the brine curing, w/v and 1.5% of BG in dry curing, w/w (ASUS). Nutritional composition, pH, water activity, shear force, fatty acid profile, color, and oxidative stability of the formulations were analyzed. The addition of BG did not affect the nutritional composition, pH, water activity, shear force, and fatty acid profile. On the other hand, it resulted in lower weight loss after centrifugation and lower values of <i>L</i>* and <i>a</i>*. TBARS values from the 30th day of storage were lower in the ASUS formulation, while carbonyl compounds at all times were lower than in the CON formulation. Results suggest that BG was an efficient alternative to nitrite in controlling protein oxidation during storage. Thus, the use of pork for the manufacture of jerked beef can be an alternative, and black garlic can be applied as a natural additive to the replacement of nitrite. In addition, black garlic was efficient in improving the oxidative stability of the jerked beef meat with pork.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"10820132241257280"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132241257280","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work was to evaluate the effects of the replacement of nitrite by natural antioxidants from black garlic (BG) on the quality parameters of jerked beef meat with pork for 60 days. Four formulations were prepared: control, 0.02% of sodium nitrite in brine curing, w/v (CON); 1.5% BG in brine curing, w/v (ASU); 1.5% BG in dry curing, w/w (ASS); and 1.5% of BG in the brine curing, w/v and 1.5% of BG in dry curing, w/w (ASUS). Nutritional composition, pH, water activity, shear force, fatty acid profile, color, and oxidative stability of the formulations were analyzed. The addition of BG did not affect the nutritional composition, pH, water activity, shear force, and fatty acid profile. On the other hand, it resulted in lower weight loss after centrifugation and lower values of L* and a*. TBARS values from the 30th day of storage were lower in the ASUS formulation, while carbonyl compounds at all times were lower than in the CON formulation. Results suggest that BG was an efficient alternative to nitrite in controlling protein oxidation during storage. Thus, the use of pork for the manufacture of jerked beef can be an alternative, and black garlic can be applied as a natural additive to the replacement of nitrite. In addition, black garlic was efficient in improving the oxidative stability of the jerked beef meat with pork.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).