Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO3 for time-resolved multiplex detection of avian influenza virus biomarkers
Yafei Tian, Yujiao Zhang, Xueyun Lu, Dan Xiao, Cuisong Zhou
{"title":"Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO3 for time-resolved multiplex detection of avian influenza virus biomarkers","authors":"Yafei Tian, Yujiao Zhang, Xueyun Lu, Dan Xiao, Cuisong Zhou","doi":"10.1016/j.ab.2024.115583","DOIUrl":null,"url":null,"abstract":"<div><p>Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO<sub>3</sub>. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.