Kianoosh Hosseini, Jeremy W Pettit, Fabian A Soto, Aaron T Mattfeld, George A Buzzell
{"title":"Toward a mechanistic understanding of the role of error monitoring and memory in social anxiety.","authors":"Kianoosh Hosseini, Jeremy W Pettit, Fabian A Soto, Aaron T Mattfeld, George A Buzzell","doi":"10.3758/s13415-024-01198-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive models state that social anxiety (SA) involves biased cognitive processing that impacts what is learned and remembered within social situations, leading to the maintenance of SA. Neuroscience work links SA to enhanced error monitoring, reflected in error-related neural responses arising from mediofrontal cortex (MFC). Yet, the role of error monitoring in SA remains unclear, as it is unknown whether error monitoring can drive changes in memory, biasing what is learned or remembered about social situations. Motivated by the longer-term goal of identifying mechanisms implicated in SA, in the current study we developed and validated a novel paradigm for probing the role of error-related MFC theta oscillations (associated with error monitoring) and incidental memory biases in SA. Electroencephalography (EEG) data were collected while participants completed a novel Face-Flanker task, involving presentation of task-unrelated, trial-unique faces behind target/flanker arrows on each trial. A subsequent incidental memory assessment evaluated memory biases for error events. Severity of SA symptoms were associated with greater error-related theta synchrony over MFC, as well as between MFC and sensory cortex. Social anxiety also was positively associated with incidental memory biases for error events. Moreover, greater error-related MFC-sensory theta synchrony during the Face-Flanker predicted subsequent incidental memory biases for error events. Collectively, the results demonstrate the potential of a novel paradigm to elucidate mechanisms underlying relations between error monitoring and SA.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"948-963"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-024-01198-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive models state that social anxiety (SA) involves biased cognitive processing that impacts what is learned and remembered within social situations, leading to the maintenance of SA. Neuroscience work links SA to enhanced error monitoring, reflected in error-related neural responses arising from mediofrontal cortex (MFC). Yet, the role of error monitoring in SA remains unclear, as it is unknown whether error monitoring can drive changes in memory, biasing what is learned or remembered about social situations. Motivated by the longer-term goal of identifying mechanisms implicated in SA, in the current study we developed and validated a novel paradigm for probing the role of error-related MFC theta oscillations (associated with error monitoring) and incidental memory biases in SA. Electroencephalography (EEG) data were collected while participants completed a novel Face-Flanker task, involving presentation of task-unrelated, trial-unique faces behind target/flanker arrows on each trial. A subsequent incidental memory assessment evaluated memory biases for error events. Severity of SA symptoms were associated with greater error-related theta synchrony over MFC, as well as between MFC and sensory cortex. Social anxiety also was positively associated with incidental memory biases for error events. Moreover, greater error-related MFC-sensory theta synchrony during the Face-Flanker predicted subsequent incidental memory biases for error events. Collectively, the results demonstrate the potential of a novel paradigm to elucidate mechanisms underlying relations between error monitoring and SA.
期刊介绍:
Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.