Distribution-informed and wavelength-flexible data-driven photoacoustic oximetry.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1117/1.JBO.29.S3.S33303
Janek Gröhl, Kylie Yeung, Kevin Gu, Thomas R Else, Monika Golinska, Ellie V Bunce, Lina Hacker, Sarah E Bohndiek
{"title":"Distribution-informed and wavelength-flexible data-driven photoacoustic oximetry.","authors":"Janek Gröhl, Kylie Yeung, Kevin Gu, Thomas R Else, Monika Golinska, Ellie V Bunce, Lina Hacker, Sarah E Bohndiek","doi":"10.1117/1.JBO.29.S3.S33303","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation.</p><p><strong>Aim: </strong>We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.</p><p><strong>Approach: </strong>We created 25 simulated training dataset variations to assess neural network performance. We used a long short-term memory network to implement a wavelength-flexible network architecture and proposed the Jensen-Shannon divergence to predict the most suitable training dataset.</p><p><strong>Results: </strong>The network architecture can flexibly handle the input wavelengths and outperforms linear unmixing and the previously proposed learned spectral decoloring method. Small changes in the training data significantly affect the accuracy of our method, but we find that the Jensen-Shannon divergence correlates with the estimation error and is thus suitable for predicting the most appropriate training datasets for any given application.</p><p><strong>Conclusions: </strong>A flexible data-driven network architecture combined with the Jensen-Shannon divergence to predict the best training data set provides a promising direction that might enable robust data-driven photoacoustic oximetry for clinical use cases.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 Suppl 3","pages":"S33303"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.S3.S33303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation.

Aim: We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.

Approach: We created 25 simulated training dataset variations to assess neural network performance. We used a long short-term memory network to implement a wavelength-flexible network architecture and proposed the Jensen-Shannon divergence to predict the most suitable training dataset.

Results: The network architecture can flexibly handle the input wavelengths and outperforms linear unmixing and the previously proposed learned spectral decoloring method. Small changes in the training data significantly affect the accuracy of our method, but we find that the Jensen-Shannon divergence correlates with the estimation error and is thus suitable for predicting the most appropriate training datasets for any given application.

Conclusions: A flexible data-driven network architecture combined with the Jensen-Shannon divergence to predict the best training data set provides a promising direction that might enable robust data-driven photoacoustic oximetry for clinical use cases.

分布信息和灵活波长数据驱动的光声血氧仪。
意义重大:光声成像(PAI)有望测量空间分辨率的血氧饱和度,但缺乏准确、稳健的光谱非混合方法来实现这一目标。准确的血氧饱和度估算可用于从癌症检测到炎症量化的重要临床应用。目的:我们通过引入循环神经网络架构,解决了现有数据驱动方法在 PAI 中估算血氧饱和度时缺乏灵活性的问题:方法:我们创建了 25 种模拟训练数据集变化来评估神经网络性能。我们使用长短期记忆网络实现了波长灵活的网络架构,并提出了詹森-香农发散法来预测最合适的训练数据集:结果:该网络架构可灵活处理输入波长,其性能优于线性解混法和之前提出的学习光谱解色法。训练数据的微小变化会显著影响我们方法的准确性,但我们发现詹森-香农发散与估计误差相关,因此适用于预测任何给定应用中最合适的训练数据集:灵活的数据驱动型网络架构与詹森-香农发散法相结合,为预测最佳训练数据集提供了一个很有前景的方向,该方向有可能为临床应用案例提供稳健的数据驱动型光声血氧仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信