On Quasi-Invariance of Harmonic Measure and Hayman–Wu Theorem

IF 0.5 Q3 MATHEMATICS
S. Yu. Graf
{"title":"On Quasi-Invariance of Harmonic Measure and Hayman–Wu Theorem","authors":"S. Yu. Graf","doi":"10.3103/s1066369x24700087","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This study defines and describes the properties of the class of diffeomorphisms of the unit disk <span>\\(\\mathbb{D} = \\{ z\\,:\\;|{\\kern 1pt} z{\\kern 1pt} |\\; &lt; 1\\} \\)</span> on the complex plane <span>\\(\\mathbb{C}\\)</span> for which the harmonic measure of the boundary arcs of the slit disk has a limited distortion (i.e., is quasi-invariant). Estimates for derivative mappings of this class are obtained. We prove that such mappings are quasiconformal and quasi-isometries with respect to the pseudohyperbolic metric. An example of a mapping with the specified property is given. As an application, a generalization of the Hayman–Wu theorem to this class of such mappings is proved.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study defines and describes the properties of the class of diffeomorphisms of the unit disk \(\mathbb{D} = \{ z\,:\;|{\kern 1pt} z{\kern 1pt} |\; < 1\} \) on the complex plane \(\mathbb{C}\) for which the harmonic measure of the boundary arcs of the slit disk has a limited distortion (i.e., is quasi-invariant). Estimates for derivative mappings of this class are obtained. We prove that such mappings are quasiconformal and quasi-isometries with respect to the pseudohyperbolic metric. An example of a mapping with the specified property is given. As an application, a generalization of the Hayman–Wu theorem to this class of such mappings is proved.

Abstract Image

论谐波量的准不变量和海曼-吴定理
摘要 本研究定义并描述了复平面(\mathbb{C}\)上单位圆盘(\mathbb{D} = \{ z\,:\;|{\kern 1pt} z{\kern 1pt} |\; < 1\} \)的差分映射类的性质,对于这类映射,狭缝圆盘的边界弧的谐波度量具有有限的扭曲(即准不变)。我们得到了该类导数映射的估计值。我们证明了这类映射相对于伪双曲度量是类共形和类等距的。我们给出了一个具有上述性质的映射实例。作为应用,我们还证明了海曼-吴(Hayman-Wu)定理对这类映射的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信