{"title":"Potential for tsunami detection via CCTV cameras in northeastern Toyama Prefecture, Japan, following the 2024 Noto Peninsula earthquake","authors":"Tomoki Shirai, Yota Enomoto, Keisuke Haga, Tatsuhiko Tokuta, Taro Arikawa, Nobuhito Mori, Fumihiko Imamura","doi":"10.1186/s40562-024-00343-9","DOIUrl":null,"url":null,"abstract":"This study explored closed-circuit television (CCTV) networks in northeastern Toyama Prefecture, Japan, as a new data source for tsunami detection following the 2024 Noto Peninsula earthquake. We analyzed CCTV footage and extracted time-series water level fluctuations at Yokoyama, Shimoiino, and Ekko. Spectral analysis of these waveforms revealed several long-period peaks (more than 100 s) in power spectral density (PSD), suggesting the presence of tsunami components. Notably, relatively large PSD peaks at approximately 5–10 min were observed at all CCTV locations in this study and at offshore wave observation points (Tanaka and Toyama). At Yokoyama, a maximum run-up of approximately 3 m was confirmed around 16:28. Although water level fluctuations at Shimoiino and Ekko were detected, identifying tsunami components proved challenging due to their small magnitude compared to other wave components. Despite these challenges, this study demonstrates the potential of CCTV networks for tsunami detection, and further research is needed to achieve real-time detection.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"38 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00343-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored closed-circuit television (CCTV) networks in northeastern Toyama Prefecture, Japan, as a new data source for tsunami detection following the 2024 Noto Peninsula earthquake. We analyzed CCTV footage and extracted time-series water level fluctuations at Yokoyama, Shimoiino, and Ekko. Spectral analysis of these waveforms revealed several long-period peaks (more than 100 s) in power spectral density (PSD), suggesting the presence of tsunami components. Notably, relatively large PSD peaks at approximately 5–10 min were observed at all CCTV locations in this study and at offshore wave observation points (Tanaka and Toyama). At Yokoyama, a maximum run-up of approximately 3 m was confirmed around 16:28. Although water level fluctuations at Shimoiino and Ekko were detected, identifying tsunami components proved challenging due to their small magnitude compared to other wave components. Despite these challenges, this study demonstrates the potential of CCTV networks for tsunami detection, and further research is needed to achieve real-time detection.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.