An investigation into the physical factors that control slow mass movements

IF 5.8 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Jonathan D. Paul, Bethany Beare, Zoe Brooks, Leonis Derguti, Rachita Sood
{"title":"An investigation into the physical factors that control slow mass movements","authors":"Jonathan D. Paul, Bethany Beare, Zoe Brooks, Leonis Derguti, Rachita Sood","doi":"10.1007/s10346-024-02280-2","DOIUrl":null,"url":null,"abstract":"<p>The behavior of slow mass movements like soil creep is well known to be governed by soil composition, slope, and cycles in temperature and rainfall. However, their magnitude and importance vary dramatically in often unpredictable ways, with important consequences for creep rate and infrastructure damage prediction. Here, we present long-term (2015–2022) creep measurements for four regions of the UK characterized by intense mass movement activity but different bedrock lithologies. We also obtained co-located temperature and precipitation time series over this period, as well as local measurements of slope and soil thickness and composition. Our goal was to deconvolve the relative importance of each observable on creep behavior. Our results imply that parent lithology governs first-order creep rates indirectly via hillslope repose angles and soil thickness and composition. Rates of ground movement on peat and sandstone soils are dictated by annual fluctuations in precipitation and temperature, respectively. By employing a simple error-minimizing regression routine, we demonstrate how creep rates can be predicted in these settings as a function of climatological observables. Over thinner limestone and thicker clay soils, however, our model fails: in these settings, we suggest that creep behavior is instead dominated by variations in regolith thickness, and slope and clay mineral content, respectively.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"30 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02280-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The behavior of slow mass movements like soil creep is well known to be governed by soil composition, slope, and cycles in temperature and rainfall. However, their magnitude and importance vary dramatically in often unpredictable ways, with important consequences for creep rate and infrastructure damage prediction. Here, we present long-term (2015–2022) creep measurements for four regions of the UK characterized by intense mass movement activity but different bedrock lithologies. We also obtained co-located temperature and precipitation time series over this period, as well as local measurements of slope and soil thickness and composition. Our goal was to deconvolve the relative importance of each observable on creep behavior. Our results imply that parent lithology governs first-order creep rates indirectly via hillslope repose angles and soil thickness and composition. Rates of ground movement on peat and sandstone soils are dictated by annual fluctuations in precipitation and temperature, respectively. By employing a simple error-minimizing regression routine, we demonstrate how creep rates can be predicted in these settings as a function of climatological observables. Over thinner limestone and thicker clay soils, however, our model fails: in these settings, we suggest that creep behavior is instead dominated by variations in regolith thickness, and slope and clay mineral content, respectively.

Abstract Image

对控制缓慢质量运动的物理因素的研究
众所周知,土壤蠕变等缓慢质量运动的行为受土壤成分、坡度以及温度和降雨周期的影响。然而,它们的规模和重要性却往往以不可预测的方式发生着巨大变化,对蠕变率和基础设施损坏预测造成了重要影响。在此,我们介绍了英国四个地区的长期(2015-2022 年)蠕变测量结果,这四个地区的特点是大规模运动活动频繁,但基岩岩性各不相同。在此期间,我们还获得了同地温度和降水时间序列,以及坡度和土壤厚度及成分的局部测量数据。我们的目标是解构各观测指标对蠕变行为的相对重要性。我们的研究结果表明,母体岩性通过山坡休止角、土壤厚度和成分间接影响一阶蠕变速率。泥炭土和砂岩土壤的地面运动速率分别受降水量和温度年波动的影响。通过使用一个简单的误差最小化回归程序,我们展示了如何在这些环境中根据气候观测数据预测蠕变率。然而,在较薄的石灰岩和较厚的粘土上,我们的模型却失效了:在这些环境中,我们认为蠕变行为分别由碎屑岩厚度、斜坡和粘土矿物含量的变化所主导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Landslides
Landslides 地学-地球科学综合
CiteScore
13.60
自引率
14.90%
发文量
191
审稿时长
>12 weeks
期刊介绍: Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides. - Landslide dynamics, mechanisms and processes - Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment - Geological, Geotechnical, Hydrological and Geophysical modeling - Effects of meteorological, hydrological and global climatic change factors - Monitoring including remote sensing and other non-invasive systems - New technology, expert and intelligent systems - Application of GIS techniques - Rock slides, rock falls, debris flows, earth flows, and lateral spreads - Large-scale landslides, lahars and pyroclastic flows in volcanic zones - Marine and reservoir related landslides - Landslide related tsunamis and seiches - Landslide disasters in urban areas and along critical infrastructure - Landslides and natural resources - Land development and land-use practices - Landslide remedial measures / prevention works - Temporal and spatial prediction of landslides - Early warning and evacuation - Global landslide database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信