{"title":"A Compact Vulnerability Knowledge Graph for Risk Assessment","authors":"Jiao Yin, Wei Hong, Hua Wang, Jinli Cao, Yuan Miao, Yanchun Zhang","doi":"10.1145/3671005","DOIUrl":null,"url":null,"abstract":"<p>Software vulnerabilities, also known as flaws, bugs or weaknesses, are common in modern information systems, putting critical data of organizations and individuals at cyber risk. Due to the scarcity of resources, initial risk assessment is becoming a necessary step to prioritize vulnerabilities and make better decisions on remediation, mitigation, and patching. Datasets containing historical vulnerability information are crucial digital assets to enable AI-based risk assessments. However, existing datasets focus on collecting information on individual vulnerabilities while simply storing them in relational databases, disregarding their structural connections. This paper constructs a compact vulnerability knowledge graph, VulKG, containing over 276K nodes and 1M relationships to represent the connections between vulnerabilities, exploits, affected products, vendors, referred domain names, and more. We provide a detailed analysis of VulKG modeling and construction, demonstrating VulKG-based query and reasoning, and providing a use case of applying VulKG to a vulnerability risk assessment task, i.e., co-exploitation behavior discovery. Experimental results demonstrate the value of graph connections in vulnerability risk assessment tasks. VulKG offers exciting opportunities for more novel and significant research in areas related to vulnerability risk assessment. The data and codes of this paper are available at https://github.com/happyResearcher/VulKG.git.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"30 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3671005","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Software vulnerabilities, also known as flaws, bugs or weaknesses, are common in modern information systems, putting critical data of organizations and individuals at cyber risk. Due to the scarcity of resources, initial risk assessment is becoming a necessary step to prioritize vulnerabilities and make better decisions on remediation, mitigation, and patching. Datasets containing historical vulnerability information are crucial digital assets to enable AI-based risk assessments. However, existing datasets focus on collecting information on individual vulnerabilities while simply storing them in relational databases, disregarding their structural connections. This paper constructs a compact vulnerability knowledge graph, VulKG, containing over 276K nodes and 1M relationships to represent the connections between vulnerabilities, exploits, affected products, vendors, referred domain names, and more. We provide a detailed analysis of VulKG modeling and construction, demonstrating VulKG-based query and reasoning, and providing a use case of applying VulKG to a vulnerability risk assessment task, i.e., co-exploitation behavior discovery. Experimental results demonstrate the value of graph connections in vulnerability risk assessment tasks. VulKG offers exciting opportunities for more novel and significant research in areas related to vulnerability risk assessment. The data and codes of this paper are available at https://github.com/happyResearcher/VulKG.git.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.