Spatiotemporal responsive hydrogel microspheres for the treatment of gastric cancer

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li Wang, Lu Fan, Anne M. Filppula, Yu Wang, Luoran Shang, Hongbo Zhang
{"title":"Spatiotemporal responsive hydrogel microspheres for the treatment of gastric cancer","authors":"Li Wang,&nbsp;Lu Fan,&nbsp;Anne M. Filppula,&nbsp;Yu Wang,&nbsp;Luoran Shang,&nbsp;Hongbo Zhang","doi":"10.1002/agt2.600","DOIUrl":null,"url":null,"abstract":"<p>The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances. Current attempts tend to elaborate on the micro/nano-structure design of the microcarriers to achieve multiple drug delivery and spatiotemporal responsive features. Here, the desired hydrogel microspheres are presented with spatiotemporal responsiveness for the treatment of gastric cancer. The microspheres are generated based on inverse opals, their skeleton is fabricated by biofriendly hyaluronic acid methacrylate (HAMA) and gelatin methacrylate (GelMA), and is then filled with a phase-changing hydrogel composed of fish gelatin and agarose. Besides, the incorporated black phosphorus quantum dots (BPQDs) within the filling hydrogel endow the microspheres with outstanding photothermal responsiveness. Two antitumor drugs, sorafenib (SOR) and doxorubicin (DOX), are loaded in the skeleton and filling hydrogel, respectively. It is found that the drugs show different release profiles upon near-infrared (NIR) irradiation, which exerts distinct performances in a controlled manner. Through both in vitro and in vivo experiments, it is demonstrated that such microspheres can significantly reduce tumor cell viability and enhance the efficiency in treating gastric cancer, indicating a promising stratagem in the field of drug delivery and tumor therapy.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances. Current attempts tend to elaborate on the micro/nano-structure design of the microcarriers to achieve multiple drug delivery and spatiotemporal responsive features. Here, the desired hydrogel microspheres are presented with spatiotemporal responsiveness for the treatment of gastric cancer. The microspheres are generated based on inverse opals, their skeleton is fabricated by biofriendly hyaluronic acid methacrylate (HAMA) and gelatin methacrylate (GelMA), and is then filled with a phase-changing hydrogel composed of fish gelatin and agarose. Besides, the incorporated black phosphorus quantum dots (BPQDs) within the filling hydrogel endow the microspheres with outstanding photothermal responsiveness. Two antitumor drugs, sorafenib (SOR) and doxorubicin (DOX), are loaded in the skeleton and filling hydrogel, respectively. It is found that the drugs show different release profiles upon near-infrared (NIR) irradiation, which exerts distinct performances in a controlled manner. Through both in vitro and in vivo experiments, it is demonstrated that such microspheres can significantly reduce tumor cell viability and enhance the efficiency in treating gastric cancer, indicating a promising stratagem in the field of drug delivery and tumor therapy.

Abstract Image

Abstract Image

用于治疗胃癌的时空响应性水凝胶微球
肿瘤药物微载体因其独特的治疗性能而备受关注。目前的尝试倾向于详细阐述微载体的微/纳米结构设计,以实现多重给药和时空响应特性。本文介绍了治疗胃癌所需的具有时空响应性的水凝胶微球。微球是基于反蛋白石生成的,其骨架由生物友好型甲基丙烯酸透明质酸(HAMA)和甲基丙烯酸明胶(GelMA)制成,然后填充由鱼胶和琼脂糖组成的相变水凝胶。此外,填充水凝胶中的黑磷量子点(BPQDs)赋予了微球出色的光热响应性。骨架和填充水凝胶中分别装载了两种抗肿瘤药物:索拉非尼(SOR)和多柔比星(DOX)。研究发现,药物在近红外(NIR)照射下呈现出不同的释放曲线,并以可控的方式发挥出独特的性能。通过体外和体内实验证明,这种微球能显著降低肿瘤细胞的存活率,提高治疗胃癌的效率,在给药和肿瘤治疗领域是一种很有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信