{"title":"Modulation format conversion between BPSK and 8QAM signals using coherent interference and four-wave mixing","authors":"Taiga Ishida and Hiroki Kishikawa","doi":"10.35848/1347-4065/ad4891","DOIUrl":null,"url":null,"abstract":"Optical fiber networks need to transmit various types of client data with different requirements of bandwidth, reach, latency, and capacity by interconnecting backbone, metro, and local access networks. Since the optimal modulation format usually differs, it should be efficiently converted at the intermediate node connecting different networks. Among the multilevel modulation format, 8-ary quadrature amplitude modulation (8QAM) is a candidate for terrestrial networks thanks to the good balance between spectral efficiency and transmission distance. In this paper, we propose modulation format conversion systems from binary phase shift keying (BPSK) to 8QAM using coherent interference in delay interferometer and its reverse conversion system using four-wave mixing in a single highly nonlinear fiber. Conversion performances are numerically evaluated based on bit error rate, constellation diagrams, 8QAM and BPSK propagation lengths, and parameters in electrical signal regeneration. As a result, error-free format conversion is achieved for both conversion systems.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad4891","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Optical fiber networks need to transmit various types of client data with different requirements of bandwidth, reach, latency, and capacity by interconnecting backbone, metro, and local access networks. Since the optimal modulation format usually differs, it should be efficiently converted at the intermediate node connecting different networks. Among the multilevel modulation format, 8-ary quadrature amplitude modulation (8QAM) is a candidate for terrestrial networks thanks to the good balance between spectral efficiency and transmission distance. In this paper, we propose modulation format conversion systems from binary phase shift keying (BPSK) to 8QAM using coherent interference in delay interferometer and its reverse conversion system using four-wave mixing in a single highly nonlinear fiber. Conversion performances are numerically evaluated based on bit error rate, constellation diagrams, 8QAM and BPSK propagation lengths, and parameters in electrical signal regeneration. As a result, error-free format conversion is achieved for both conversion systems.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS