Carleman estimates for third order operators of KdV and non KdV-type and applications

IF 1 3区 数学 Q1 MATHEMATICS
Serena Federico
{"title":"Carleman estimates for third order operators of KdV and non KdV-type and applications","authors":"Serena Federico","doi":"10.1007/s10231-024-01467-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study a class of variable coefficient third order partial differential operators on <span>\\({\\mathbb {R}}^{n+1}\\)</span>, containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of <span>\\({\\mathbb {R}}^{n+1}\\)</span>. A discussion of possible applications in the context of dispersive equations is provided.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01467-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01467-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study a class of variable coefficient third order partial differential operators on \({\mathbb {R}}^{n+1}\), containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of \({\mathbb {R}}^{n+1}\). A discussion of possible applications in the context of dispersive equations is provided.

KdV 和非 KdV 型三阶算子的卡勒曼估计及其应用
本文研究的是\({\mathbb {R}}^{n+1}\) 上的一类可变系数三阶偏微分算子,其子类包含在任意空间维度上的一些 KdV 型可变系数算子。对于这样的类以及邻接类,我们得到了卡勒曼估计和在\({\mathbb {R}}^{n+1}\) 任意点的局部可解性。我们还讨论了在分散方程中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信