A Novel Study on q-Fibonacci Sequence Spaces and Their Geometric Properties

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Taja Yaying, Ekrem Savaş, Mohammad Mursaleen
{"title":"A Novel Study on q-Fibonacci Sequence Spaces and Their Geometric Properties","authors":"Taja Yaying,&nbsp;Ekrem Savaş,&nbsp;Mohammad Mursaleen","doi":"10.1007/s40995-024-01644-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we develop a <i>q</i>-Fibonacci matrix <span>\\(\\mathcal {F}(q)=(f^q_{nv})_{n,v\\in \\mathbb {N}_0}\\)</span> given by </p><div><div><span>$$\\begin{aligned} f^q_{nv}=\\left\\{ \\begin{array}{ccc} q^{v+1}\\frac{f_{v+1}(q)}{f_{n+3}(q)-1}&amp;{}, &amp;{} 0\\le v\\le n, \\\\ 0 &amp;{}, &amp;{} v&gt;n. \\end{array}\\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\left( f_v(q)\\right)\\)</span> represents a sequence of <i>q</i>-Fibonacci numbers. By utilizing the matrix <span>\\(\\mathcal {F}(q)\\)</span>, we define matrix domains <span>\\(\\ell _p (\\mathcal {F}(q)):=(\\ell _p)_{\\mathcal {F}(q)}\\)</span> <span>\\((0&lt;p&lt; \\infty )\\)</span> and <span>\\(\\ell _\\infty (\\mathcal {F}(q)):=(\\ell _\\infty )_{\\mathcal {F}(q)}\\)</span> also known as <i>q</i>-Fibonacci sequence spaces. We obtain Schauder basis for the space <span>\\(\\ell _p (\\mathcal {F}(q))\\)</span> and determine Alpha-(<span>\\(\\alpha\\)</span>-), Beta-(<span>\\(\\beta\\)</span>-) and Gamma-(<span>\\(\\gamma\\)</span>-) duals of the newly defined spaces. We obtain some results related to matrix transformations from the spaces <span>\\(\\ell _p(\\mathcal {F}(q))\\)</span> and <span>\\(\\ell _\\infty (\\mathcal {F}(q))\\)</span> to classical sequence spaces <span>\\(\\ell _\\infty ,\\)</span> <i>c</i> and <span>\\(c_0\\)</span>. We also examined some of the geometric properties like approximation property, Dunford–Pettis property, Hahn–Banach extension property, and rotundity of the spaces <span>\\(\\ell _p(\\mathcal {F}(q))\\)</span> and <span>\\(\\ell _\\infty (\\mathcal {F}(q))\\)</span>.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 4","pages":"939 - 951"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01644-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study we develop a q-Fibonacci matrix \(\mathcal {F}(q)=(f^q_{nv})_{n,v\in \mathbb {N}_0}\) given by

$$\begin{aligned} f^q_{nv}=\left\{ \begin{array}{ccc} q^{v+1}\frac{f_{v+1}(q)}{f_{n+3}(q)-1}&{}, &{} 0\le v\le n, \\ 0 &{}, &{} v>n. \end{array}\right. \end{aligned}$$

where \(\left( f_v(q)\right)\) represents a sequence of q-Fibonacci numbers. By utilizing the matrix \(\mathcal {F}(q)\), we define matrix domains \(\ell _p (\mathcal {F}(q)):=(\ell _p)_{\mathcal {F}(q)}\) \((0<p< \infty )\) and \(\ell _\infty (\mathcal {F}(q)):=(\ell _\infty )_{\mathcal {F}(q)}\) also known as q-Fibonacci sequence spaces. We obtain Schauder basis for the space \(\ell _p (\mathcal {F}(q))\) and determine Alpha-(\(\alpha\)-), Beta-(\(\beta\)-) and Gamma-(\(\gamma\)-) duals of the newly defined spaces. We obtain some results related to matrix transformations from the spaces \(\ell _p(\mathcal {F}(q))\) and \(\ell _\infty (\mathcal {F}(q))\) to classical sequence spaces \(\ell _\infty ,\) c and \(c_0\). We also examined some of the geometric properties like approximation property, Dunford–Pettis property, Hahn–Banach extension property, and rotundity of the spaces \(\ell _p(\mathcal {F}(q))\) and \(\ell _\infty (\mathcal {F}(q))\).

q-Fibonacci 序列空间及其几何特性的新研究
在这项研究中,我们开发了一个 q-Fibonacci 矩阵(mathcal {F}(q)=(f^q_{nv})_{n,v\in \mathbb {N}_0}),其值为 $$\begin{aligned} f^q_{nv}=\left\{ \begin{array}{ccc} q^{v+1}\frac{f_{v+1}(q)}{f_{n+3}(q)-1}&;{}, &{} 0\le v\le n,\0 &{}, &{} v>n.\end{array}\right.\end{aligned}$$其中 \(\left( f_v(q)\right)\) 表示q-斐波纳契数列。通过使用矩阵 \(\mathcal {F}(q)\), 我们定义了矩阵域 \(\ell _p (\mathcal {F}(q)):=(\ell _p)_{\mathcal {F}(q)}\)\((0<p<\infty )\)和(\ell _\infty (\mathcal {F}(q)):=(\ell _\infty )_{\mathcal {F}(q)}\) 也被称为 q-Fibonacci 序列空间。我们得到了空间 \(\ell _p (\mathcal {F}(q))\) 的 Schauder 基,并确定了新定义空间的 Alpha-(\(\alpha\)-), Beta-(\(\beta\)-) 和 Gamma-(\(\gamma\)-) 对偶。我们得到了一些与矩阵变换有关的结果,这些矩阵变换从空间 \(\ell _p(\mathcal {F}(q))\) 和 \(\ell _infty (\mathcal {F}(q))\) 到经典序列空间 \(\ell _infty ,\) c 和 \(c_0\) 。我们还研究了空间 \(\ell _p(\mathcal {F}(q))\) 和 \(\ell _infty (\mathcal {F}(q))\) 的一些几何性质,如近似性质、邓福德-佩提斯性质、哈恩-巴纳赫扩展性质和旋转性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信