Effect of cyclic compression on the micromechanical properties of a Zr-based metallic glass

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anwei Wang, Yang Wang, Hongwu Zhu, Hanxiao Sun, Yansen Li
{"title":"Effect of cyclic compression on the micromechanical properties of a Zr-based metallic glass","authors":"Anwei Wang, Yang Wang, Hongwu Zhu, Hanxiao Sun, Yansen Li","doi":"10.3389/fmats.2024.1401094","DOIUrl":null,"url":null,"abstract":"In this study, the effect of cyclic compression on the micromechanical properties of a Zr-based metallic glass (MG) was investigated via nanoindentation. Cyclic compression significantly softened the surface of the sample, with a maximum hardness loss of 19.93%. The number of cyclic compression passes had a greater effect on the hardness of the sample than the cyclic compression load. The elastic modulus exhibited a nonlinear variation upon increasing the cyclic loading or number of passes at a lower loading rate due to the coupling effect of loading rate and cyclic compression treatment. Then, the serration behavior and strain rate sensitivity analysis were applied. The calculated m-values obtained for MGs were all negative and gradually tended to zero upon further cyclic compression treatment. This demonstrated the weakening effect of cyclic compression on the strain rate sensitivity of MG, and the underlying mechanism was discussed. This study provides a process reference for studying the fatigue failure behaviors of MGs from the perspective of mechanical properties, which is useful for understanding their fatigue generation.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"70 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1401094","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the effect of cyclic compression on the micromechanical properties of a Zr-based metallic glass (MG) was investigated via nanoindentation. Cyclic compression significantly softened the surface of the sample, with a maximum hardness loss of 19.93%. The number of cyclic compression passes had a greater effect on the hardness of the sample than the cyclic compression load. The elastic modulus exhibited a nonlinear variation upon increasing the cyclic loading or number of passes at a lower loading rate due to the coupling effect of loading rate and cyclic compression treatment. Then, the serration behavior and strain rate sensitivity analysis were applied. The calculated m-values obtained for MGs were all negative and gradually tended to zero upon further cyclic compression treatment. This demonstrated the weakening effect of cyclic compression on the strain rate sensitivity of MG, and the underlying mechanism was discussed. This study provides a process reference for studying the fatigue failure behaviors of MGs from the perspective of mechanical properties, which is useful for understanding their fatigue generation.
循环压缩对 Zr 基金属玻璃微机械特性的影响
本研究通过纳米压痕法研究了循环压缩对锆基金属玻璃(MG)微机械性能的影响。循环压缩明显软化了样品表面,最大硬度损失为 19.93%。与循环压缩载荷相比,循环压缩次数对样品硬度的影响更大。由于加载速率和循环压缩处理的耦合效应,在较低加载速率下增加循环加载或循环次数时,弹性模量呈现非线性变化。然后,应用了锯齿行为和应变速率敏感性分析。计算得出的 MG m 值均为负值,并在进一步循环压缩处理后逐渐趋于零。这证明了循环压缩对 MG 应变率敏感性的削弱作用,并对其内在机理进行了探讨。该研究为从力学性能角度研究 MG 的疲劳破坏行为提供了工艺参考,有助于理解其疲劳产生的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Materials
Frontiers in Materials Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
6.20%
发文量
749
审稿时长
12 weeks
期刊介绍: Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide. Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信