Incidence Coloring of Outer-1-planar Graphs

Pub Date : 2024-06-05 DOI:10.1007/s10255-024-1126-3
Meng-ke Qi, Xin Zhang
{"title":"Incidence Coloring of Outer-1-planar Graphs","authors":"Meng-ke Qi,&nbsp;Xin Zhang","doi":"10.1007/s10255-024-1126-3","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph <i>G</i> has a proper incidence (Δ(<i>G</i>) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph <i>G</i> has an incidence (Δ(<i>G</i>) + 3, 2)-coloring, and every outer-1-planar graph <i>G</i> with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(<i>G</i>) + 2, 2)-coloring.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1126-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph G has a proper incidence (Δ(G) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph G has an incidence (Δ(G) + 3, 2)-coloring, and every outer-1-planar graph G with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(G) + 2, 2)-coloring.

分享
查看原文
外-1-平面图的入射着色
如果一个图形可以在平面上绘制,使得所有顶点都位于外面上,并且每条边最多与另一条边交叉,那么这个图形就是外-1-平面图形。众所周知,每个外-1-平面图都是一个平面局部 3 树。在本文中,我们猜想每个平面图 G 都有一个适当的入射 (Δ(G) + 2)- 着色,并针对最大度数至少为 8 或周长至少为 4 的外-1 平面图证实了这一猜想。具体地说,我们证明了每一个外-1-平面图 G 都有一个入射 (Δ(G) + 3, 2)-着色,而每一个最大度数至少为 8 或周长至少为 4 的外-1-平面图 G 都有一个入射 (Δ(G) + 2, 2)-着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信