Incidence Coloring of Outer-1-planar Graphs

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Meng-ke Qi, Xin Zhang
{"title":"Incidence Coloring of Outer-1-planar Graphs","authors":"Meng-ke Qi,&nbsp;Xin Zhang","doi":"10.1007/s10255-024-1126-3","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph <i>G</i> has a proper incidence (Δ(<i>G</i>) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph <i>G</i> has an incidence (Δ(<i>G</i>) + 3, 2)-coloring, and every outer-1-planar graph <i>G</i> with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(<i>G</i>) + 2, 2)-coloring.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"840 - 848"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1126-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph G has a proper incidence (Δ(G) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph G has an incidence (Δ(G) + 3, 2)-coloring, and every outer-1-planar graph G with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(G) + 2, 2)-coloring.

外-1-平面图的入射着色
如果一个图形可以在平面上绘制,使得所有顶点都位于外面上,并且每条边最多与另一条边交叉,那么这个图形就是外-1-平面图形。众所周知,每个外-1-平面图都是一个平面局部 3 树。在本文中,我们猜想每个平面图 G 都有一个适当的入射 (Δ(G) + 2)- 着色,并针对最大度数至少为 8 或周长至少为 4 的外-1 平面图证实了这一猜想。具体地说,我们证明了每一个外-1-平面图 G 都有一个入射 (Δ(G) + 3, 2)-着色,而每一个最大度数至少为 8 或周长至少为 4 的外-1-平面图 G 都有一个入射 (Δ(G) + 2, 2)-着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信