{"title":"Incidence Coloring of Outer-1-planar Graphs","authors":"Meng-ke Qi, Xin Zhang","doi":"10.1007/s10255-024-1126-3","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph <i>G</i> has a proper incidence (Δ(<i>G</i>) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph <i>G</i> has an incidence (Δ(<i>G</i>) + 3, 2)-coloring, and every outer-1-planar graph <i>G</i> with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(<i>G</i>) + 2, 2)-coloring.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1126-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph G has a proper incidence (Δ(G) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph G has an incidence (Δ(G) + 3, 2)-coloring, and every outer-1-planar graph G with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(G) + 2, 2)-coloring.