Long-time Asymptotics for the Reverse Space-time Nonlocal Hirota Equation with Decaying Initial Value Problem: without Solitons

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Wei-qi Peng, Yong Chen
{"title":"Long-time Asymptotics for the Reverse Space-time Nonlocal Hirota Equation with Decaying Initial Value Problem: without Solitons","authors":"Wei-qi Peng,&nbsp;Yong Chen","doi":"10.1007/s10255-024-1121-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we mainly consider the Cauchy problem for the reverse space-time nonlocal Hirota equation with the initial data rapidly decaying in the solitonless sector. Start from the Lax pair, we first construct the basis Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation. Furthermore, using the approach of Deift-Zhou nonlinear steepest descent, the explicit long-time asymptotics for the reverse space-time nonlocal Hirota is derived. For the reverse space-time nonlocal Hirota equation, since the symmetries of its scattering matrix are different with the local Hirota equation, the <i>ϑ</i>(<i>λ</i><sub><i>i</i></sub>) (<i>i</i> = 0, 1) would like to be imaginary, which results in the <span>\\(\\delta _{{{\\rm{\\lambda}}_i}}^0\\)</span> contains an increasing <span>\\(t{{\\pm \\,Im\\vartheta ({{\\rm{\\lambda}}_i})} \\over 2}\\)</span>, and then the asymptotic behavior for nonlocal Hirota equation becomes differently.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"708 - 727"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1121-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we mainly consider the Cauchy problem for the reverse space-time nonlocal Hirota equation with the initial data rapidly decaying in the solitonless sector. Start from the Lax pair, we first construct the basis Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation. Furthermore, using the approach of Deift-Zhou nonlinear steepest descent, the explicit long-time asymptotics for the reverse space-time nonlocal Hirota is derived. For the reverse space-time nonlocal Hirota equation, since the symmetries of its scattering matrix are different with the local Hirota equation, the ϑ(λi) (i = 0, 1) would like to be imaginary, which results in the \(\delta _{{{\rm{\lambda}}_i}}^0\) contains an increasing \(t{{\pm \,Im\vartheta ({{\rm{\lambda}}_i})} \over 2}\), and then the asymptotic behavior for nonlocal Hirota equation becomes differently.

具有衰减初值问题的反向时空非局部广达方程的长时渐近线:无孤子
在这项工作中,我们主要考虑无孤子扇区初始数据快速衰减的反向时空非局部广达方程的考奇问题。从拉克斯对出发,我们首先构造了反向时空非局部广达方程的基黎曼-希尔伯特问题。此外,利用 Deift-Zhou 非线性最陡降法,推导出反向时空非局部 Hirota 方程的显式长时渐近线。对于反向时空非局部广达方程,由于其散射矩阵的对称性与局部广达方程不同,ϑ(λi)(i = 0、1)希望是虚数,这就导致了 \(\delta _{{{\rm{\lambda}}_i}}^0\) 包含一个递增的 \(t{\{pm \,Im\vartheta ({{\rm{\lambda}}_i})} }。\over2}\),那么非局部广达方程的渐近行为就会变得不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信