Derivation of Expanded Isospectral-Nonisospectral Integrable Hierarchies via the Column-vector Loop Algebra

Pub Date : 2024-06-05 DOI:10.1007/s10255-024-1047-1
Hai-feng Wang, Yu-feng Zhang
{"title":"Derivation of Expanded Isospectral-Nonisospectral Integrable Hierarchies via the Column-vector Loop Algebra","authors":"Hai-feng Wang,&nbsp;Yu-feng Zhang","doi":"10.1007/s10255-024-1047-1","DOIUrl":null,"url":null,"abstract":"<div><p>A scheme for generating nonisospectral integrable hierarchies is introduced. Based on the method, we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem. It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space <span>\\(\\widetilde{\\mathbb{C}}^{6}\\)</span>. By reducing these integrable hierarchies, we obtain the expanded isospectral and nonisospectral derivative nonlinear Schrödinger equation. By using the trace identity, the bi-Hamiltonian structure of these two hierarchies are also obtained. Moreover, some symmetries and conserved quantities of the resulting hierarchy are discussed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1047-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A scheme for generating nonisospectral integrable hierarchies is introduced. Based on the method, we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem. It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space \(\widetilde{\mathbb{C}}^{6}\). By reducing these integrable hierarchies, we obtain the expanded isospectral and nonisospectral derivative nonlinear Schrödinger equation. By using the trace identity, the bi-Hamiltonian structure of these two hierarchies are also obtained. Moreover, some symmetries and conserved quantities of the resulting hierarchy are discussed.

分享
查看原文
通过柱向量环代数推导扩展等谱-非等谱可积分层次结构
本文介绍了一种生成非异谱可积分层次结构的方法。基于该方法,我们通过考虑线性谱问题,推导出了孤子方程的非等谱层次。由此,基于 6 维复线性空间 \(\widetilde{\mathbb{C}}^{6}\)推导出相应的扩展等谱和非等谱可积分层次。通过还原这些可积分层次,我们得到了扩展的等谱和非等谱导数非线性薛定谔方程。利用迹同一性,我们还得到了这两个层次的双哈密顿结构。此外,我们还讨论了所得层次结构的一些对称性和守恒量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信