On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators $$\mathbb{A}{{\mathbb{T}}_{{\lambda ,j}}}$$

IF 0.5 Q3 MATHEMATICS
A. Yu. Trynin
{"title":"On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators $$\\mathbb{A}{{\\mathbb{T}}_{{\\lambda ,j}}}$$","authors":"A. Yu. Trynin","doi":"10.3103/s1066369x24700105","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper proposes a new method for obtaining a generalized solution to the mixed boundary value problem for a parabolic equation with boundary conditions of the third kind and a continuous initial condition. Generalized functions are understood in the sense of the sequential approach. The representative of the class of sequences, which is a generalized function, is obtained using the function interpolation operator, constructed using solutions to the Cauchy problem. The solution is obtained in the form of a series that converges uniformly inside the domain of the solution.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a new method for obtaining a generalized solution to the mixed boundary value problem for a parabolic equation with boundary conditions of the third kind and a continuous initial condition. Generalized functions are understood in the sense of the sequential approach. The representative of the class of sequences, which is a generalized function, is obtained using the function interpolation operator, constructed using solutions to the Cauchy problem. The solution is obtained in the form of a series that converges uniformly inside the domain of the solution.

论使用算子 $$\mathbb{A}{{\mathbb{T}}_{{\lambda ,j}} 求解抛物型方程混合边界值问题的一种方法
摘要 本文提出了一种新方法,用于求解具有第三类边界条件和连续初始条件的抛物方程的混合边界值问题的广义解。广义函数是从序列方法的意义上理解的。序列类的代表是广义函数,它是利用函数插值算子得到的,而函数插值算子是利用考奇问题的解构建的。解是以在解域内均匀收敛的级数形式获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信