A new stacked gate oxide L-shaped tunnel field effect transistor

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaveh Eyvazi, Hamid Reza Yaghoubi, Mohammad Azim Karami
{"title":"A new stacked gate oxide L-shaped tunnel field effect transistor","authors":"Kaveh Eyvazi,&nbsp;Hamid Reza Yaghoubi,&nbsp;Mohammad Azim Karami","doi":"10.1007/s10825-024-02183-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new stacked gate oxide L-shaped Tunnel Field Effect Transistor (LTFET) is proposed. The stacked gate oxide structure incorporates high-k and SiO<sub>2</sub> dielectrics. The high-k dielectric, specifically, contributes to a robust electric field at the source/channel junction. This augmented electric field results in more energy band bending and a thinner tunneling barrier. As a result, the proposed device shows the drain current of 0.224 mA/μm, OFF-current of 1.3 × 10<sup>–17</sup> A/μm, threshold voltage of 0.62 V and average subthreshold swing of 34 mV/decade, in comparison with the conventional LTFET. Moreover, this paper demonstrates the role of both Shockley–Read–Hall generation and trap assisted tunneling in the subthreshold swing degradation due to the existence of trap inside the silicon band gap.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"740 - 750"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02183-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new stacked gate oxide L-shaped Tunnel Field Effect Transistor (LTFET) is proposed. The stacked gate oxide structure incorporates high-k and SiO2 dielectrics. The high-k dielectric, specifically, contributes to a robust electric field at the source/channel junction. This augmented electric field results in more energy band bending and a thinner tunneling barrier. As a result, the proposed device shows the drain current of 0.224 mA/μm, OFF-current of 1.3 × 10–17 A/μm, threshold voltage of 0.62 V and average subthreshold swing of 34 mV/decade, in comparison with the conventional LTFET. Moreover, this paper demonstrates the role of both Shockley–Read–Hall generation and trap assisted tunneling in the subthreshold swing degradation due to the existence of trap inside the silicon band gap.

Abstract Image

新型叠层栅极氧化物 L 型隧道场效应晶体管
本文提出了一种新型叠层栅极氧化物 L 型隧道场效应晶体管(LTFET)。这种叠层栅极氧化物结构采用了高 K 电介质和二氧化硅电介质。高 k 电介质尤其有助于在源极/沟道结形成强大的电场。这种增强的电场导致更多的能带弯曲和更薄的隧穿势垒。因此,与传统的 LTFET 相比,该器件的漏极电流为 0.224 mA/μm,关断电流为 1.3 × 10-17 A/μm,阈值电压为 0.62 V,平均阈下摆幅为 34 mV/decade。此外,由于硅带隙内存在陷阱,本文证明了肖克利-雷德-霍尔效应产生和陷阱辅助隧穿在亚阈值摆幅衰减中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信