Chunyang Yuan, Yong Chang, Yifeng Song, Song Lin, Fengren Jing
{"title":"Design and analysis of a negative pressure wall-climbing robot with an omnidirectional characteristic for cylindrical wall","authors":"Chunyang Yuan, Yong Chang, Yifeng Song, Song Lin, Fengren Jing","doi":"10.1017/s0263574724000493","DOIUrl":null,"url":null,"abstract":"<p>A negative pressure wall-climbing robot is a special robot for climbing vertical walls, which is widely used in construction, petrochemicals, nuclear energy, shipbuilding, and other industries. The mobility and adhesion of the wheel-track wall-climbing robot with steering-straight mode are significantly decreased on the cylindrical wall, especially during steering. The reason is that the suction chamber may separate from the wall and the required driving force for movement increases, during steering. In this paper, a negative pressure wall-climbing robot with omnidirectional movement mode is developed. By introducing a compliant adjusting suction mechanism and omni-belt wheels, an omnidirectional movement mode is formed instead of the steering-straight mode, and the performances of adhesion and mobility are improved. We establish the safety adhesion model for the robot on a cylindrical wall and obtain the safety adhesion forces. We designed and manufactured an experimental prototype based on the analysis. Experiments showed that the robot has the ability of full maneuverability in cylindrical walls.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000493","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A negative pressure wall-climbing robot is a special robot for climbing vertical walls, which is widely used in construction, petrochemicals, nuclear energy, shipbuilding, and other industries. The mobility and adhesion of the wheel-track wall-climbing robot with steering-straight mode are significantly decreased on the cylindrical wall, especially during steering. The reason is that the suction chamber may separate from the wall and the required driving force for movement increases, during steering. In this paper, a negative pressure wall-climbing robot with omnidirectional movement mode is developed. By introducing a compliant adjusting suction mechanism and omni-belt wheels, an omnidirectional movement mode is formed instead of the steering-straight mode, and the performances of adhesion and mobility are improved. We establish the safety adhesion model for the robot on a cylindrical wall and obtain the safety adhesion forces. We designed and manufactured an experimental prototype based on the analysis. Experiments showed that the robot has the ability of full maneuverability in cylindrical walls.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.