Morphology-enhanced piezoelectric performance of SnS nanobelts for acetaminophen degradation†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shuhui Liu, Huayang Zhang, Yantao Wang, Hongqi Sun, Shaobin Wang and Wenjie Tian
{"title":"Morphology-enhanced piezoelectric performance of SnS nanobelts for acetaminophen degradation†","authors":"Shuhui Liu, Huayang Zhang, Yantao Wang, Hongqi Sun, Shaobin Wang and Wenjie Tian","doi":"10.1039/D4TA02531H","DOIUrl":null,"url":null,"abstract":"<p >Piezoelectric catalysis, which transforms mechanical vibrations into chemical energy, offers a novel solution for energy conversion and chemical reactions. This study demonstrates the effectiveness of tin monosulfide (SnS) nanobelts in piezoelectric catalytic degradation of pharmaceutical pollutants for wastewater treatment. We obtained SnS with high crystallinity and different morphological features by adjusting temperature, reaction solution volume, and amount of urea in the hydrothermal synthesis. Compared to other different forms, SnS nanobelts with step edges demonstrate superior piezoelectric properties in peroxymonosulfate activation, efficiently eliminating acetaminophen (APAP) with a rate constant of 0.40 min<small><sup>−1</sup></small> at an external force of ultrasound. Calculations by the finite element method indicate that the interface polarization will affect piezoelectric field distribution and surface piezoelectric potentials, with step edge nanobelt &gt; nanobelt/nanoparticle &gt; nanobelt. Mechanistic studies indicate the synergistic effect of piezoelectrically generated h<small><sup>+</sup></small>/e<small><sup>−</sup></small> carriers and hydroxyl/sulfate radicals for APAP removal. The findings offer insights into morphology engineering in the development of tin-based piezoelectric catalysts and their applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 26","pages":" 15744-15752"},"PeriodicalIF":9.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02531h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric catalysis, which transforms mechanical vibrations into chemical energy, offers a novel solution for energy conversion and chemical reactions. This study demonstrates the effectiveness of tin monosulfide (SnS) nanobelts in piezoelectric catalytic degradation of pharmaceutical pollutants for wastewater treatment. We obtained SnS with high crystallinity and different morphological features by adjusting temperature, reaction solution volume, and amount of urea in the hydrothermal synthesis. Compared to other different forms, SnS nanobelts with step edges demonstrate superior piezoelectric properties in peroxymonosulfate activation, efficiently eliminating acetaminophen (APAP) with a rate constant of 0.40 min−1 at an external force of ultrasound. Calculations by the finite element method indicate that the interface polarization will affect piezoelectric field distribution and surface piezoelectric potentials, with step edge nanobelt > nanobelt/nanoparticle > nanobelt. Mechanistic studies indicate the synergistic effect of piezoelectrically generated h+/e carriers and hydroxyl/sulfate radicals for APAP removal. The findings offer insights into morphology engineering in the development of tin-based piezoelectric catalysts and their applications.

Abstract Image

Abstract Image

用于对乙酰氨基酚降解的形态增强型 SnS 纳米颗粒的压电性能
压电催化将机械振动转化为化学能,为能量转换和化学反应提供了一种新的解决方案。本研究证明了一硫化锡(SnS)纳米颗粒在压电催化降解制药污染物以处理废水方面的有效性。我们通过调节水热合成过程中的温度、反应溶液体积和尿素用量,获得了具有高结晶度和不同形态特征的 SnS。与其他不同形态相比,具有阶梯状边缘的 SnS 纳米颗粒在过一硫酸盐活化过程中表现出优异的压电特性,在超声外力作用下能以 0.40 min-1 的速率常数有效消除对乙酰氨基酚(APAP)。有限元法计算表明,界面极化将影响压电场分布和表面压电势,阶梯边缘纳米带>纳米带/纳米颗粒>纳米带。机理研究表明,压电产生的 h+/e- 载流子和羟基/硫酸自由基对 APAP 的去除具有协同效应。研究结果为开发锡基压电催化剂及其应用中的形态工程提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信