Hua Zhao, Xueyang Bai, Qingtian Zeng, Heng Zhou, Xuemei Bai
{"title":"Nested Entity Recognition Method Based on Multidimensional Features and Fuzzy Localization","authors":"Hua Zhao, Xueyang Bai, Qingtian Zeng, Heng Zhou, Xuemei Bai","doi":"10.1007/s11063-024-11657-2","DOIUrl":null,"url":null,"abstract":"<p>Nested named entity recognition (NNER) aims to identify potentially overlapping named entities. Sequence labeling method and span-based method are two commonly used methods in nested named entity recognition. However, the linear structure of sequence labeling method results in relatively poor performance, and span-based method requires traversing all spans, which brings very high time complexity. All of them fail to effectively leverage the positional dependencies between internal and external entities. In order to improve these issues, this paper proposed a nested entity recognition method based on Multidimensional Features and Fuzzy Localization (MFFL). Firstly, this method adopted the shared encoding that fused three features of characters, words, and parts of speech to obtain a multidimensional feature vector representation of the text and obtained rich semantic information in the text. Secondly, we proposed to use the fuzzy localization to assist the model in pinpointing the potential locations of entities. Finally, in the entity classification, it used a window to expand the sub-sequence and enumerate possible candidate entities and predicted the classification labels of these candidate entities. In order to alleviate the problem of error propagation and effectively learn the correlation between fuzzy localization and classification labels, we adopted multi-task learning strategy. This paper conducted several experiments on two public datasets. The experimental results showed that the proposed method achieves ideal results in both nested entity recognition and non-nested entity recognition tasks, and significantly reduced the time complexity of nested entity recognition.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"121 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11657-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nested named entity recognition (NNER) aims to identify potentially overlapping named entities. Sequence labeling method and span-based method are two commonly used methods in nested named entity recognition. However, the linear structure of sequence labeling method results in relatively poor performance, and span-based method requires traversing all spans, which brings very high time complexity. All of them fail to effectively leverage the positional dependencies between internal and external entities. In order to improve these issues, this paper proposed a nested entity recognition method based on Multidimensional Features and Fuzzy Localization (MFFL). Firstly, this method adopted the shared encoding that fused three features of characters, words, and parts of speech to obtain a multidimensional feature vector representation of the text and obtained rich semantic information in the text. Secondly, we proposed to use the fuzzy localization to assist the model in pinpointing the potential locations of entities. Finally, in the entity classification, it used a window to expand the sub-sequence and enumerate possible candidate entities and predicted the classification labels of these candidate entities. In order to alleviate the problem of error propagation and effectively learn the correlation between fuzzy localization and classification labels, we adopted multi-task learning strategy. This paper conducted several experiments on two public datasets. The experimental results showed that the proposed method achieves ideal results in both nested entity recognition and non-nested entity recognition tasks, and significantly reduced the time complexity of nested entity recognition.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters