{"title":"Controllable synthesis of porous MxS@C composites (M = fe, Cu, Mn) with highly efficient electromagnetic absorption properties","authors":"Wenhui Zhang, Xinbo Wu, Dazhi Wang, Weijie Cai","doi":"10.1007/s10934-024-01601-z","DOIUrl":null,"url":null,"abstract":"<div><p>As the frequency range of electronic devices gradually expands, exploring frequency insensitive electromagnetic wave adsorption (EWA) materials that can achieve effective absorption in all bands has aroused great interest. A series of Fe<sub>1 − x</sub>S@C composite materials with three-dimensional conductive networks were successfully prepared in this work. In the preparation process, poly (aryl ether sulfone) with branched carboxylic (PAES-C) was selected as the skeleton and Fe<sup>3+</sup> ions were introduced via chemical adsorption. The main purpose of this work was to develop array porous composite materials with good EWA property. The work proposed a novel controllable method for preparing metal sulfides to explore the electromagnetic wave absorption. This routine was also developed to prepare other M<sub>x</sub>S@C composites (M = Fe, Cu, Mn). Compared to Mn<sub>x</sub>S@C and Cu<sub>x</sub>S@C composites, the RL<sub>min</sub> value of Fe<sub>1 − x</sub>S@C-4 was − 40.6 dB at 13.52 GHz, and at a thickness of 1.5 mm the effective bandwidth reached 3.12 GHz. Furthermore, its effective absorption band covered Ku, X, and C radar bands at different thicknesses.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1865 - 1879"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01601-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As the frequency range of electronic devices gradually expands, exploring frequency insensitive electromagnetic wave adsorption (EWA) materials that can achieve effective absorption in all bands has aroused great interest. A series of Fe1 − xS@C composite materials with three-dimensional conductive networks were successfully prepared in this work. In the preparation process, poly (aryl ether sulfone) with branched carboxylic (PAES-C) was selected as the skeleton and Fe3+ ions were introduced via chemical adsorption. The main purpose of this work was to develop array porous composite materials with good EWA property. The work proposed a novel controllable method for preparing metal sulfides to explore the electromagnetic wave absorption. This routine was also developed to prepare other MxS@C composites (M = Fe, Cu, Mn). Compared to MnxS@C and CuxS@C composites, the RLmin value of Fe1 − xS@C-4 was − 40.6 dB at 13.52 GHz, and at a thickness of 1.5 mm the effective bandwidth reached 3.12 GHz. Furthermore, its effective absorption band covered Ku, X, and C radar bands at different thicknesses.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.