Vapour phase hydrodeoxygenation of Guaiacol using Ni/SBA-15 for bio-oil upgrading

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED
Kayalvizhi Jeevanandham, Deepika Sekar, Pandurangan Arumugam
{"title":"Vapour phase hydrodeoxygenation of Guaiacol using Ni/SBA-15 for bio-oil upgrading","authors":"Kayalvizhi Jeevanandham,&nbsp;Deepika Sekar,&nbsp;Pandurangan Arumugam","doi":"10.1007/s10934-024-01643-3","DOIUrl":null,"url":null,"abstract":"<div><p>The primary aim of this study is to break down the methoxy (-OCH<sub>3</sub>) and hydroxyl(-OH) oxygenates present in lignin, a component of biomass. This degradation was performed on a lignin-derived model compound, guaiacol, using a highly effective Ni-loaded SBA-15 catalyst. SBA-15 was synthesized via a hydrothermal method, and varying amounts of NiO (5, 10, 15, 20, 25 wt%) were incorporated into SBA-15 through wet impregnation. The catalysts were characterized by using techniques such as XRD, DRS-UV, FT-IR, TPR, BET, SEM, and HR-TEM. Their catalytic performance was evaluated through the hydrodeoxygenation of guaiacol in a vapor phase reactor under controlled atmospheric pressure conditions. Notably, at 200 °C with a hydrogen flow rate of 50 ml/h, the 10 wt% NiO/SBA-15 catalyst demonstrated superior catalytic activity, achieving high guaiacol conversion and aimed product selectivity.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1881 - 1893"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01643-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim of this study is to break down the methoxy (-OCH3) and hydroxyl(-OH) oxygenates present in lignin, a component of biomass. This degradation was performed on a lignin-derived model compound, guaiacol, using a highly effective Ni-loaded SBA-15 catalyst. SBA-15 was synthesized via a hydrothermal method, and varying amounts of NiO (5, 10, 15, 20, 25 wt%) were incorporated into SBA-15 through wet impregnation. The catalysts were characterized by using techniques such as XRD, DRS-UV, FT-IR, TPR, BET, SEM, and HR-TEM. Their catalytic performance was evaluated through the hydrodeoxygenation of guaiacol in a vapor phase reactor under controlled atmospheric pressure conditions. Notably, at 200 °C with a hydrogen flow rate of 50 ml/h, the 10 wt% NiO/SBA-15 catalyst demonstrated superior catalytic activity, achieving high guaiacol conversion and aimed product selectivity.

Abstract Image

利用 Ni/SBA-15 对愈创木酚进行气相加氢脱氧,实现生物油提纯
本研究的主要目的是分解生物质成分木质素中的甲氧基(-OCH3)和羟基(-OH)含氧化合物。使用高效的镍负载 SBA-15 催化剂对木质素衍生的模型化合物愈创木酚进行了降解。SBA-15 是通过水热法合成的,并通过湿浸渍法在 SBA-15 中加入了不同含量的 NiO(5、10、15、20、25 wt%)。使用 XRD、DRS-UV、FT-IR、TPR、BET、SEM 和 HR-TEM 等技术对催化剂进行了表征。在受控常压条件下,通过在气相反应器中对愈创木酚进行加氢脱氧,对催化剂的催化性能进行了评估。值得注意的是,在 200 °C、氢气流速为 50 ml/h 的条件下,10 wt% NiO/SBA-15 催化剂表现出卓越的催化活性,实现了较高的愈创木酚转化率和目标产品选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信