Yeonseung Cheong, Taeyeon Kim, Jiwon Ryu, Ilhan Ryoo, Jieun Park, Kwon-ho Jeon, Seung-Muk Yi, Philip K. Hopke
{"title":"Source apportionment of PM2.5 using DN-PMF in three megacities in South Korea","authors":"Yeonseung Cheong, Taeyeon Kim, Jiwon Ryu, Ilhan Ryoo, Jieun Park, Kwon-ho Jeon, Seung-Muk Yi, Philip K. Hopke","doi":"10.1007/s11869-024-01584-5","DOIUrl":null,"url":null,"abstract":"<div><p>PM<sub>2.5</sub> pollution is problematic in megacities on the western coast in South Korea (Seoul, Incheon, and Gwangju). As these megacities are located downwind of China, their air quality is easily affected by local and long-range transport sources. PM<sub>2.5</sub> samples collected in Seoul (<i>n</i> = 222), Incheon (<i>n</i> = 221), and Gwangju (<i>n</i> = 224) from September 2020 to March 2022, were chemically characterized. Dispersion normalized positive matrix factorization was applied to these PM<sub>2.5</sub> speciated data to provide source apportionments. Nine common sources (including secondary nitrate, secondary sulfate, biomass burning, mobile, and waste incinerator) were identified at all sites. The conditional bivariate probability function helped to identify each site’s local sources. Joint potential source contribution function analysis identified northeast China and Inner Mongolia as potential source areas of long-range transport pollutants affecting all sites. Forced lifestyle changes due to the pandemic such as limited gatherings while increased recreational activities may have caused different patterns on the biomass burning source. The constraints on old vehicles during the policy implementation periods likely reduced the mobile source contributions in cities that adopted the policy. Secondary nitrate accounted for 40% of the PM<sub>2.5</sub> mass at all sites, implying a significant impact from NO<sub>X</sub> sources. While the current policy focuses primarily on controlling primary emission sources, it should include secondary sources as well which may include precursor emissions control. Healthier air quality would be achieved if the policy effects are not limited to local, but also to foreign sources in regions upwind of Korea by intergovernmental collaboration.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 11","pages":"2579 - 2599"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01584-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01584-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
PM2.5 pollution is problematic in megacities on the western coast in South Korea (Seoul, Incheon, and Gwangju). As these megacities are located downwind of China, their air quality is easily affected by local and long-range transport sources. PM2.5 samples collected in Seoul (n = 222), Incheon (n = 221), and Gwangju (n = 224) from September 2020 to March 2022, were chemically characterized. Dispersion normalized positive matrix factorization was applied to these PM2.5 speciated data to provide source apportionments. Nine common sources (including secondary nitrate, secondary sulfate, biomass burning, mobile, and waste incinerator) were identified at all sites. The conditional bivariate probability function helped to identify each site’s local sources. Joint potential source contribution function analysis identified northeast China and Inner Mongolia as potential source areas of long-range transport pollutants affecting all sites. Forced lifestyle changes due to the pandemic such as limited gatherings while increased recreational activities may have caused different patterns on the biomass burning source. The constraints on old vehicles during the policy implementation periods likely reduced the mobile source contributions in cities that adopted the policy. Secondary nitrate accounted for 40% of the PM2.5 mass at all sites, implying a significant impact from NOX sources. While the current policy focuses primarily on controlling primary emission sources, it should include secondary sources as well which may include precursor emissions control. Healthier air quality would be achieved if the policy effects are not limited to local, but also to foreign sources in regions upwind of Korea by intergovernmental collaboration.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.