Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-08-21 DOI:10.1016/j.joule.2024.05.007
{"title":"Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells","authors":"","doi":"10.1016/j.joule.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Low-band-gap tin (Sn)-lead (Pb) perovskites<span> are a critical component in all-perovskite tandem solar cells (APTSCs). Current state-of-the-art Sn-Pb perovskite devices exclusively use poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer (HTL) but suffer from undesired buried-interface degradation. Here, we show that the </span></span>deprotonation of the –SO</span><sub>3</sub><span>H group in PSS is the root cause of the interface degradation due to its low acid dissociation constant (p</span><em>K</em><sub>a</sub>), leading to acidic erosion and iodine volatilization in Sn-Pb perovskites. We identify that HTL featuring the carboxyl (–COOH) group with a higher p<em>K</em><sub>a</sub><span><span>, such as poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT), can suppress deprotonation and strengthen the interface, mitigating the buried-interface degradation. Motivated by established P3CT modification, we introduce Pb doping to P3CT to increase its work function and reduce interfacial energy loss. We fabricate APTSCs with a champion efficiency of 27.8% and an operational lifetime of over 1,000 h, with 97% retaining efficiency under </span>maximum power point tracking.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002356","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-band-gap tin (Sn)-lead (Pb) perovskites are a critical component in all-perovskite tandem solar cells (APTSCs). Current state-of-the-art Sn-Pb perovskite devices exclusively use poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer (HTL) but suffer from undesired buried-interface degradation. Here, we show that the deprotonation of the –SO3H group in PSS is the root cause of the interface degradation due to its low acid dissociation constant (pKa), leading to acidic erosion and iodine volatilization in Sn-Pb perovskites. We identify that HTL featuring the carboxyl (–COOH) group with a higher pKa, such as poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT), can suppress deprotonation and strengthen the interface, mitigating the buried-interface degradation. Motivated by established P3CT modification, we introduce Pb doping to P3CT to increase its work function and reduce interfacial energy loss. We fabricate APTSCs with a champion efficiency of 27.8% and an operational lifetime of over 1,000 h, with 97% retaining efficiency under maximum power point tracking.

Abstract Image

Abstract Image

抑制去质子化使锡铅包晶石中的持久埋藏界面适用于全包晶石串联太阳能电池
低带隙锡(Sn)-铅(Pb)包晶石是全包晶石串联太阳能电池(APTSC)的重要组成部分。目前最先进的锡铅包晶器件专门使用聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)作为空穴传输层(HTL),但却受到埋藏界面降解的困扰。在这里,我们发现 PSS 中 -SO3H 基团的去质子化是导致界面降解的根本原因,因为它的酸解离常数 (pKa) 很低,从而导致锡铅包晶石中的酸性侵蚀和碘挥发。我们发现,具有较高 pKa 的羧基(-COOH)的 HTL(如聚[3-(4-羧基丁基)噻吩-2,5-二基](P3CT))可以抑制去质子化并强化界面,从而减轻埋藏界面降解。受已建立的 P3CT 改性技术的启发,我们在 P3CT 中掺入了铅,以增加其功函数并减少界面能量损失。我们制造的 APTSC 的冠军效率为 27.8%,工作寿命超过 1,000 小时,在最大功率点跟踪下的保持效率为 97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信